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AI Landscape KCU, s

* John McCarthy —“the science and engineering of

% Artificial Intelligence making intelligent machines".
= * Tasks include perception, learning, reasoning,
problem-solving, decision-making.

* Algorithms and models learn from data.

* Learning approaches include supervised,
unsupervised, semi-supervised, and
reinforcement learning.

‘i.i‘ Machine Learning

* Utilises deep artificial neural networks.
* Learns representations of data through
@ Deep Learning multiple layers.

* Effective for tasks such as image recognition,
natural language processing, etc.

* Focus on creating models to generate new data.
. * Examples include Generative Adversarial
= Generative Al Networks (GANSs), Variational Autoencoders
(VAEs), Large Language Models (LLMs)
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Generative Al Applications U

Art Generation: GAN, VAE and stable diffusion models can create artworks such as paintings and music.

Text Generation: LLMs can generate text such as stories, poetry, and dialogues.

Image Editing: Tools like StyleGAN can be used for photo editing and realistic image synthesis.

Content Creation: Generative Al can assist in content creation for various media, including video
games, movies, and advertising, by generating characters, scenes, and scenarios.

Drug Discovery: generate novel molecular structures with desired properties, potentially speeding up
drug discovery processes.

Design Assistance: Al can assist designers by generating design suggestions for products, architecture,
etc., based on specified criteria and constraints.

Simulation and Prediction: Generative models can simulate real-world scenarios and predict
outcomes, useful in fields like climate science, economics, and epidemiology.

Data Augmentation: create synthetic data to augment existing datasets for training ML models.



Outline

* Part I: Fundamentals
* Language Models
* N-grams
* Feedforward Neural Network (FFNN) Language Models
* Part II: RNNs and Attentions
* Recurrent Neural Networks (RNNs / LSTMs [ GRUs)
* Sequence-to-Sequence learning
* Attentions
* Part lll: Transformer and LLMs
* TheTransformer Architecture
* Language Models Built on Transformer
* LLMTraining Paradigms
e LLM Evaluation
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Part |I: Funhdamentals

* Language Models
* N-grams

* Feedforward Neural Network (FFNN) Language Models



What is a Language Model (LM)? 9!!5

« A model of computing either of the following is called a Language Model:

o the probability of a sequence of words:

p(An NLP summer school happens in Athens)=??

p(W) — p(Wll Wo,ee Wn)

 the probability of the upcoming word:

p(Athens | An NLP summer school happens in)=7?

P(Wi|W1, Wo, .. Wi—l)



Language Model

« How to estimate the probability p(W) = p(wy, wy,..., w,)?

« We can rely on the Chain Rule of Probability

p(W) = p(w)pw,|w)p(wswy, wy) ...

n
= p(w,) z p(wilwy, ...,w;_1)
=2
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Computing p(W) using the chain rule

p(An NLP summer school happens in Athens)=

p(An)X

p(NLP | An) X

p(summer | An NLP) X

p(school | An NLP summer) X

p(happens | An NLP summer school) X

p(in | An NLP summer school happens) X
p(Athens | An NLP summer school happens in) X

>
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How do we compute probabilities?

e Based on the number of occurrences?

p(Athens | An NLP summer school happens in) =

count(An NLP summer school happens in Athens)

count(An NLP summer school happens in)

« Problem: there are so many different sequences, we won't observe
enough instances in our data!
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Markov Assumption KU

« Approximate the probability by simplifying it:
15t order Markov assumption

p(Athens | An NLP summer school happens in) = p(Athens |in)

o 2" order Markov assumption

p(Athens | An NLP summer school happens in) = p(Athens | happens in)

o It's much more likely that we'll observe “in Athens"” or “happens in
Athens"” in our training data.

11



Markov Assumption

« Which we can generalise as kt"-order Markov assumption:

p(wilwy, wy, ..., wi_q) = P(Wi|Wi—g, Wi—k41s eeer Wi—1)

i.e., we will only look at the last k words

12



N-grams

« N-gram: sequence of n words

. .g. ] want to go to the cinema
« 2-grams (bigrams): [ want, want to, to go, go to, to the,...
 3-grams (trigrams): [ want to, want to go, to go to,...
« 4-grams: [ want to go, want to go to, to go to the,...
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Computing n-gram Probabilities

* Let's say we have the following sentences to learn our language models:
see what I found
you found a penny
it has been found
the book you found

you came yesterday

What is the probability of the bigram “you found”?

With the 1st-order Markov assumption:

P(you, found) = P(found | you)

>
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Computing n-gram Probabilities KCUs

* Let's say we have the following sentences to learn our language models:
see what I found
you found a penny
it has been found
the book you found

you came yesterday

What is the probability of the bigram “you found”?

With the 1st-order Markov assumption:

count(you found) 2
P(you, found) = P(found |you) = count(yow) =_3

15



Language Models

« We can go with unigram, bigrams, trigrams, 4-grams, ...

« Unigram LM: p(Wy, Wy,..., wy) = X7 p(wy)
« Bigram LM: p(Wy, Wy,..., wp)=p(wy) 2, p(w;lw;_4)
o trigram LM: p(Wy, Wa,.. wp) = p(w)p Wy |wy) Xiis p(Wilwi_p, wi_q)

« Note: the longer the length:

« The more detailed our language model
i.e. long sequences will capture more grammar than short sequences

« Butthe more sparse our counts
i.e. many observations only seen once

>
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The Intuition of Smoothing KCU 2
* We have sparse statistics:
P(w | “found a")
3 — penny gl ¢
2 — solution § % =
1 — tenner ° % ;é E ‘%
1 — book =
7 — Total count
* We'd like to improve the distribution:
P(w | “found a")
3 — penny — 2.5
2 — solution — 1.5
1 — tenner — 0.5 =
1— book — 0.5 2 % 5= & T
Other — 2 21l s|l[8| = ©° °

7 — Total count



Smoothing KCL 5

* Relocate probability mass to make generalisation better

* Laplace smoothing (add-one smoothing)
* Pretend we saw each word one more time than we actually did.
* Just add one to all counts, and adjust normalization

* MLE estimate: clw. ., w.
PMLE(Wi lwi—1)= ( = l)
c(w,_,)

* Add-one estimate:

c(w,_,,w)+1
cw_)+V

P wlw_ )=




Evaluation of a Language Model KCU

« We want to evaluate whether our language model is good.

o i.e. does our language model prefer good sentences to bad ones?

. i.e. does it assign higher probability:

|II

o to “real” or “frequent” sentences (e.g. | want to)

|II

. than “ungrammatical” or “rarely observed” sentences? (e.g. want | to)

19



Evaluation of a Language Model 9!!5

o Evaluation:

« Isourlanguage model good in giving high probabilities to sentences in our
corpus?

« Usually done in a comparative way:
« Trainlanguage model 1 (LM1) from corpus 1.
« Trainlanguage model 2 (LM2) from corpus 2.

« Forsentences in corpus 3, which of LM1 and LM2 is giving me higher
probabilities?

o« We need an evaluation metric to determine which of LM1 or LM2 is best.

20
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Evaluation Approaches KCUizz

« Two different evaluation approaches:

« Extrinsic or in-vivo evaluation
i.e. Test LMs in some NLP task (sentiment analysis, machine translation, spell

corrector, etc.).

« Intrinsic or in-vitro evaluation
i.e. evaluate LMs directly — how good can the model assign probabilities to
real unseen data?

21



Intrinsic Evaluation: Perplexity
* Perplexity:

Given a language model, on average:
How difficult is it to predict the next word?

e.g. I always order pizza with cheese and — 777

>
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Intrinsic Evaluation: Perplexity KCU
« The Shannon Game: mushrooms 0.1
« How well can we predict the next word? pepperoni 0.1

jalapenos 0.01
pizza with cheese and ____

biscuits 0.000001

« A better model: the one that gives higher probability to the actual next word.

o Ifthe actual sentence is “pizza with cheese and biscuits”, my model is quite bad.

o If the actual sentence is “pizza with cheese and mushrooms"”, my model is better.

23
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Intrinsic Evaluation: Perplexity KCU

* The best LM is the one that is the best at predicting the test set = will give
test sentences the highest probability.

* Perplexity is the inverse probability of the test set, normalised by the number
of words.

e Given a set of test sentences D with a total of N words:

1N 1
PP D — , ) weey N =
( ) p(Wl W2 WN) \/p(Wl; Wy, ---;WN)

* Lower perplexity is better.

24
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Perplexity as a Branching Factor KU

* Under a uniform distribution, perplexity will be the vocabulary size.

* Suppose we have sentences consisting of random digits [0-9], |V| = 10

* What is the perplexity of the data for a model that assigns the same

probability to each digit? .

PP(D) = ,Wo, oor,) N =|— =— =10
(D) = p(wy,w, Wy ) (10 ) 10

* Perplexity is the weighted average branching factor of a language.
* i.e., the number of possible next word that can follow any word.

25



Limitations of N-gram Language Models 9!!5

* Fixed context window

* Only looks at the last n- 1 words — ignores longer dependencies.
* E.g., “"The book that | borrowed from the library ... was fascinating”
* A bigram/trigram model struggles to connect “book ... was”.

* Smoothing is imperfect

* Fixes zero probabilities but often underestimates rare yet valid sequences.

* Not semantically aware

* Counts surface forms, not meaning.
* E.g., "He eats a cake” + “A cake is eaten by him".

26



Neural Language Models (LMs) ks

ssssssssss

—— Language Modeling: Calculating Traditional approach: N-gram based LMs

— probability of the next word in a Modern approach: Neural LMs (outperform n-grams)
sequence given previous context. State of the art: Transformer-based models

1

Key insight: Even simple feed-forward LMs can perform surprisingly well.

27



Simple Feedforward Neural Language Models

 Previously, we compute p(W) = p(wy, wy,..., w,,)

« using the Chain Rule of Probability

pIW) = p(w)) ) p(wilwy, ., W)

* and make Markov assumption to limit the history

p(wilwy, wy, ..., wi_q1) = P(Wi Wi, Wi—kg1s eeer Wi—1)

* Task: predict next word w; given prior words w;_, W;_,, W;_3, ...
* Solution: using neural networks for probability estimation

>
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Simple Feedforward Neural Language Models %=

Output word Wi p(W; |Wi_te, Wi_ks1s - Wi—1; 0)

Feedforward

Neural Network

History context

29



Simple Feedforward Neural Language Models

* Problem: We are dealing with sequences of arbitrary length.
* Solution: Sliding windows (of fixed length)

p(wi|wi™) = p(w;|wii

>
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A Fixed-window Neural Language Model KU

books

laptops

output distribution
§ = softmax(Uh + by) € RIV!

hidden layer
h= f(We+by) [oooooo}oooooo]

%4
concatenated word embeddings
e = [e®: 6@ ®). ] [oofo oo}oo ..f. oo}oo]
words / one-hot vectors the  students opened  their
2D 2@ 73 @ 2D @) 2 (3) (@)

Bengio et al., 2003. A neural probabilistic language model. Journal of machine learning research, 3(Feb), pp.1137-1155.

Credit: https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf 31



https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf
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https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf
https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf
https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf
https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf

A Fixed-window Neural Language Model

* Improvements over N-gram LMs:

* No sparsity problem
* No need to store all observed n-grams

* Challenges:
* Context window is too small
* Increasing window size — much larger parameter matrix W

* Window can never fully capture long-range context
* Inputs at different positions use different weights in W

* — No symmetry in how inputs are processed

Can we have a neural architecture that can process arbitrary length input?

>
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Part 1I: RNNs and Attentions

* Recurrent Neural Networks (RNNs /LSTMs [ GRUs)
* Sequence-to-Sequence learning
* Attentions



Recurrent Neural Networks (RNNs) e

ssssssssss

A family of neural networks designed for sequential data.
Handle variable-length input naturally.

Capture word order.

Can model long-range dependencies (especially gated variants like
LSTMs/GRUs).

Do not rely on the Markov assumption when used as language models.

34



Recurrent Neural Networks (RNNSs) KCL 222
Vi Y1 Y2 Y3 Ty
N ol ] ol

| hh W Wh W
Q)ht > —> hy —> M — hy b py g,
Wx n I th I thI th I thI
X1 X2 X3 "t Xp

Xt

35



Recurrent Neural Networks (RNNSs) Wl§

KCL. e
We can process a sequence of vectors x by applying a
recurrence formula at every time step:
YVt
Why T W
hel = fr (a1, o) ="

t| = | Jw\t—1,| T4 .

New state Old state Input vector at thr
some time step

some function
with parameters W

36



Recurrent Neural Networks (RNNSs) Wl§

We can process a sequence of vectors x by

WhyI Why1 WhyI Whyr applying a recurrence formula at every time
step:

thI thI thf thf ht:fW(ht—laxt)

The same function and the same set of parameters are used at every time step.

37



(Simple) Recurrent Neural Network KU
0t Y2 Yt-1 Yt Verr o Ve = Wiyl
Why I Whyl Whyl Why I

XX ht—Z —— ht—l — ht —ht+1 eeoe ht — tanh(Whhht_l + thxt)

"hidden” vector h

* Re-use the same weight matrix
sooe xt_z xt_l xt xt+1 oo at everytime-step

* The state consists of a single
Wixn I Win I Wixn I thl 9

38



RNN: Computational Graph: Many to Many WL

L
— O N

Y1 Y2 Y3 YT

Why I Whyl Whyl Why I

hg i hy il h, i h3 hr
Win I Win I Win I thl



RNN Computational Graph: Many to One Whr
E.g. sentiment classification Positive
y
]
e ﬂ h, Whn h, M hs M h,
W&hI M&hl WQhI W&ﬁ[
il X2 X3 X4

The food is delicious!



RNN Computational Graph: One to Many

E.g. image captioning

<START> a dog <END>
Y1 Y2 Y3 Ya
Whyl Whyl WhyI
= h; M h3 —V@' hy

>
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Sequence to Sequence: many-to-one + one-to-many SCI{§

eeeeeeeeee

Many to one: Encode input One to many: Produce output
sequence in a single vector sequence from single input vector
R 4t g
Y1 Y2 Y3
Whyl WhJ/I Whyl
Whh Whn Whh Whh Whn Wy



Simple RNN: Elman Network & Jordan Network KO ez

* ElIman Network —a three-layer network with the addition of a set of "context units”
which connects to the hidden layer fixed with a weight of one
* Jordan network —the context units are fed from the output layer instead of the

hidden layer. Elman Network Jordan Network

context
unit

YVt-1 Yt Ver1 YVt+1

- is’j\yt Why1 WhyI Why \

W,
ht —Lly ht+1

ht+1

xhr th th Wx h

AN e Xp_q X Xer1 o Xp— Xt Xt+1

43



Bidirectional RNN E‘c’?

ssssssssss

Xt—1 Xt Xt+1
Vxh l Vxh l Vxh l
, th , th ,
hey = h'y +—h'
YVt-1 Yt YVt+1
14 1%
he_q — h; —Liy hytq
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Unfortunately ...... KU

* RNN-based network is not always easy to learn

Real experiments on language modeling

@=ll  sometimes

R
R 3
Lucky
e — J:L

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

EpOCh 45

(Adapter from Hung-yi Lee’s slide)



Vanilla RNN Gradient Flow - —2&

ow

hy KCL. e
E E E E
t—2 — 5 y y
t—1 t t+1 E()’;J’):ZEt(J’tJYt):_Zzytlogyt
t t C
“*t YVi-2 YVt-1 YVt Yt+1 oo Ve = softmax(Whpyh¢)
Why I Why I Whyl Why I
Whn W 1%
hh hh
ceoe ht—Z —_— ht—l — n, — ht+1 eee hy =tanh(Wyphi—q + Wynxt)
W,n T Wyn T thT Win T
For individual cost term
XX xt—Z Xt_l xt xt+1 coe

0E, OE, 99,

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013



Vanilla RNN Gradient Flow - -2

OWnn KCU s
Et—z Et—l Et Et+1 E(y,9) ZEEt(Yt»yt) :_223’1:108?1:
t t C

A /A Vi1 Vi Ver1 *°° yt = softmax(Wp, h¢)

Why I Why l Why] Why I

Whn Whn Whin

eee ht—Z — ht—l — ht — ht+1 oo ht = tanh(Whhht_l + thxt)

W, ] l W, [ W, I th] 9F, _ 9E,09; oh,

' OWhp 09y Ohy OWpy,
t

oo xt—Z xt—l xt xt+1 oo _ aEt% aht ahk

09 0he £ Oy W,

47



Vanilla RNN Gradient Flow

. ht —_ tanh(Whhht_l —+ thxt)
OE,  0E,09,~ 0h, Ohy

oWy, 09,0h, £ Ohy OWpy,

. dh ) . .
when performing 6Wt , we need to sum over all intermediate latent nodes, i.e.
hh

dhy O0Ohq dhy O0h, + 4 dhy Oh¢i—q
dhy OWhpp oh, OWyn ~ Ohi_q OWpp

Rewrite Ohe to fill in the gap with chain rule:

dhy
t
aht ahi T . /
= ‘ ‘ = ‘ ‘ Whhdlag(tanh (Whhhi—l + thxt))
oh, | oh;_4 .
i=k+1 i=k+1

Backpropagation from h, to h, multiplies by Wj,,, many times

48



Vanilla RNN Gradient Flow

0E, 0E, 39, ~ oh, ol oh,
oW,, 09.0h, £ Ohyc OWp, Ohy,
Wyl large:

Computing gradient
of h; involves many
factors of Wy,

(and repeated tanh)

Exploding gradients

w,l, small:
Vanishing gradients

t
= 1_[ W,fhdiag(tanh’(Whhhi_l + Winxt))
i=k+1

Gradient clipping: Scale

_> . . . . .
gradient if its norm is too big

grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
grad *= (threshold / grad_norm)

— Change RNN architecture

49



Long Short Term Memory (LSTM) [Hochreiter et al., 1997] T

NATURAL
KK CL, wnsuse
ssssssssss

i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell

o: Output gate, How much to reveal cell
g: Gate gate (7), How much to write to cell

/]i\ [0

_ g W (ht_.1>
0] g It

h,_
- \g/ \tanh/
Forget Input Gate Output Ct = f © Ct—1 T10O g
gate  gate gate gate hi = 0@ tanh(ct)

0]
This and related figures from http://colah.github.io/posts/2015-08-Understanding-LSTMs/ >
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Step-by-Step LSTM Walk Through 9!{5

ssssssssss

* Step 1: what information we’re going to throw away from the cell state.

* Forget gate — outputs a number between o and 1

* 1: “completely keep this”
* 0: "completely get rid of this.”

f fo=0 (Wy-lh 1,2 + by)

Lt

oy



ssssssssss

Step-by-Step LSTM Walk Through... gc,{>

* Step 2: what new information we’re going to store in the cell state.

* Step 2.1: input gate — whether to write to cell.

Gate gate — how much to write to cell

it =0 (Wi-lhi—1,2¢] + b;)
ét :tanh(WC°[ht_1,$t] + bc)

52



ssssssssss

Step-by-Step LSTM Walk Through... gc,{>

* Step 2: what new information we’re going to store in the cell state.

* Step 2.1: input gate — whether to write to cell.

Gate gate — how much to write to cell

* Step 2.2: Combine thnse two to create an update to the cell.
Ci—1 ® @ C't

ftT Ztr'%é Ct = ft % Ct—l + it % ét

53
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Step-by-Step LSTM Walk Through... 9!{>

* Step 3: what to output based on the cell state
* Step 3.1: output gate — decides what parts of the cell state to output.

 Step 3.2: apply tanh to cell state (to push the values to be in [-1, 1]), then scale
by the output gate to rﬁlefse only the chosen parts.
t

o (Wo [ht—laxt] + bo)
= 0; * tanh (C})

S
(o
|

5
|

54



Long Short Term Memory (LSTM)

Vanilla RNN LSTM
) o
h =l o |w (h;tu—1>
_ t—1 t
h; = tanh (W ( z, )) g tanh
cc=fOc_1+10g
h: = 0 ® tanh(c;)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997



LSTM

he

9

9

+

X

tanh

o)

tanh

\\\\\

Forget
gate

Input

gate

Gate
gate

h,

Output
gate

., only elementwise
multiplication by f, no matrix
multiply by W

1 o

/ _ o VV—(h¢—1>
0 o Tt

g tanh

cc=f0Oc-1+10g
hy = o ® tanh(c;)

56



LSTM Nl%

< A A
C e ) @ )
t—1 >——@ > C, P—— > Ct+1
D Canh>
I ot r»'f = r:f
o ol [tann] [ O o] o][tenh] [ O |
ht—] _’JL]—H_[_H_'_”j_l > >ht _’UI | | ) > > ht+1

Uninterrupted gradient flow!

57



LSTM Variant - Gated Recurrent Unit (GRU) 9!{35

eeeeeeeeee

* Combines the forget and input gates into a single "update gate”
* Merges the cell state and hidden state

2y =0 (W, - |ht_1,x¢]) Update gate

e
|
Q

=

-_ht_l,ilft_) Reset gate

h; = tanh (W - [re % he_1, 24])

\\ ht:(l—zt)*ht_l—l—zt*ﬁt

Reset Update Candidate
gate gate state

58
Cho et al., Learning phrase representations using RNN encoder-decoder for statistical machine translation, arXiv:1406.7078, 2014.



Interim Summary 9!!5

* RNN is good at dealing with sequence input and/or output.

* Vanilla RNNs — suffer from gradient vanishing/explosion problem.
* Exploding is controlled with gradient clipping.
* Vanishing is controlled with additive interactions (LSTM or GRU).

* Next topics to cover:

* Sequence-to-sequence learning
 Attention mechanism
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Sequence-to-Sequence (seq2seq) Learning U

Seq2seq learning typically involves two Recurrent Neural Networks

(RNNs).
The first RNN is an encoder which encodes the input sequence, and
the second RNN is a decoder which generates the output sequence.

Machine Translation

les pauvres sont The poor don’t have
/ démunis any money <o e

Chatbot

@
84HOW are you?} [ am fine. ]> é
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Neural Machine Translation (NMT) — seq2seq Model

Target sentence (output)
A

Encoding of the source sentence. Provides A

initial hidden state for Decoder RNN. the poor don't have any money <END>
Z \ O
% 2
- 8
3 @
L Z

les pauvres sont démunis  <START> the poor dont have any money

| J
Y

>

NATURAL
KCL.&5
PROCESSING

Decoder RNN is a Language Model that generates

Source sentence (input) target sentence conditioned on encoding.

Encoder RNN produces
an encoding of the
source sentence.

This and related figures were adapted from the slides of Abigail See and Richard Socher.
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Training a Neural Machine Translation system T

: " = negative log = negative log = negative log
SegZSeq 's optimised as T prob of “the” prob of “have” prob of <END>
a single system. 1
Backpropagation J= let = + o + 3 HJal+ Js + J6 + Iz
operates “end to end”. t=1 I I j[ '[ [ }[
V. %2 ¥ V% ¥ Y6 P
= . | | - | L &
o : : : : o) 0 @) (0] (o) o) () 8
O Q.
3 o e[ e[ e > 8 > Q > ’8—’3—’8—"8 @®
S o (o] |o] |o ol (o] |o] |o] |o] |o] |o -
c <
les pauvres sont démunis <START> the poor don’t have any money
N\ J \ J
Y Y

Source sentence (from corpus) Target sentence (from corpus)
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Sequence-to-sequence: the bottleneck problem (\Il>

This needs to capture all information
about the source sentence.

Information bottleneck! Target sequence (output)
i A
Encoding of the r N
source the poor dont have any money <END>
sentiance

Encoder RNN
f_M\
&xrn
(0000]
£&xrn
H_J

NNY Jepodaq

les pauvres sont <START> the poor dont have any money
\ _démunis y,
N

Source sentence (input)

Problems with this architecture? ;



Attention

e Attention provides a solution to the bottleneck problem.

 Core idea: on each step of the decoder, focus on a particular part of
the source sequence
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Sequence-to-sequence with attention

Encoder Attention

scores

RNN

dot product

{
g

les pauvres sont démunis

L

J

v
Source sentence (input)

0000

<START>

>

NATURAL
K‘ l LANGUAGE
PROCESSING

HK_J
NNY J19p0da(



Sequence-to-sequence with attention 9!{>

dot product

c
0
O o
T 5
O O
= w
<C
W)
5 :
°Z o
3Z =
c X @
L A
e
=z

les pauvres sont démunis <START>

| J
Y

Source sentence (input)




Sequence-to-sequence with attention

dot product

Attention
scores

Encoder
RNN
f_J;\

les pauvres sont démunis  <START>

| J
Y

Source sentence (input)

>

NATURAL
K‘ l LANGUAGE
PROCESSING

HK_J
NNY J19p0da(



Sequence-to-sequence with attention

dot product

Attention
scores

Encoder
RNN
f_J;\

les pauvres sont démunis <START>

| J
Y

Source sentence (input)

>

NATURAL
K‘ l LANGUAGE
PROCESSING

HK_J
NNY J19p0da(
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Sequence-to-sequence with attention

Attention

Attention

Encoder

scores distribution

On this decoder timestep, we’re

mostly focusing on the first
/ encoder hidden state (”les”)

~
]

[

[

[

—M

les pauvres sont déemunis

L

J

v
Source sentence (input)

«—— Take softmax to turn the scores

into a probability distribution

<START>

>

NATURAL
KK CLL, wnsuse
PROCESSING

HK_J
NNY J19p0da(



Sequence-to-sequence with attention 9!!5

Attention, Use the attention distribution to take a
output weighted sum of the encoder hidden

c S states.

S S A

QS { H The attention output mostly

<2 Z S S— contains information the hidden

- states that received high attention.

S 3

& 3

£ 0

<
w)

= &

B Z ]

S = ®

c -

L A
Z
p

les pauvres sont démunis  <START>

| J
Y

Source sentence (input) 70




Sequence-to-sequence with attention 9!{>

Attention the

output A .
- R Concatenate attention output

sS , .7 Y1 <— with decoder hidden state, then

< 3 { H oy 1 use to compute Y1 as before

t 43 =] =] =]

<35

S ¢

s 3

£ o

<
)

5 S

Sz a

82 >

. 2
z

les pauvres sont démunis  <START>

| J
Y

Source sentence (input) 71




Sequence-to-sequence with attention

Attention

Attention

Encoder

scores distribution

Attention
output

poor

les pauvres sont démunis <START> the

L

J

v
Source sentence (input)

>

NATURAL
KCL.&5
PROCESSING

HK_J
NNY J19p0da(
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Sequence-to-sequence with attention

Attention don't

output T
CC A
o-f:’ Y3
'-Ej N
9-‘5{
2
=
C
OU)
'EF_’
© 3
E o
<
| -
()
o Z
Z
80:{
Ll

les pauvres sont démunis <START> the poor

| J
Y

Source sentence (input)

>

NATURAL
KCL s
PROCESSING

HK_J
NNY J19p0da(
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Sequence-to-sequence with attention

Attention

Attention

Encoder

scores distribution

Attention
output

les pauvres sont démunis

L

J

v
Source sentence (input)

have

<START> the poor don't

>

NATURAL
KCL s
PROCESSING

HK_J
NNY J19p0da(
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Sequence-to-sequence with attention

Attention Attention

Encoder

scores distribution

RNN

Attention
output

les pauvres sont déemunis

L

J

v
Source sentence (input)

<START> the poor don’t have

>

NATURAL
KCL.&5
PROCESSING

NNY J19p0da(
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Sequence-to-sequence with attention

Attention Attention

Encoder

scores distribution

RNN

Attention
output

les pauvres sont démunis

L

J

v
Source sentence (input)

<START> the poor don't

have any

NATURAL
KCL.&5
PROCESSING

NNY J19p0da(

76



Attention: in equations T

NATURAL
KCL.&5
PROCESSING

+ Encoder hidden states  hy,...,hy € R?

L Attention ¢ the
« Decoder hidden state at timestep t: §; € R

output

. t. C
Step 1: Compute attention scores e”: S .S
= 35
c 9
t _ 1T T N o=
e" =[s; h1,...,s; hy] € R £ 5
©
Step2: Normalise into attention weights a; 32
o' = softmax(e’) € RY g S

<

Step3: Compute context (attention output) al

Encoder
RNN

N
a; — Z Offhl € Rh
=1

Step 4: Combine with decoder state
les pauvres sont démunis  <START>

[at; St] = RQh \ e J
Source sentence (input) 77




>

Why Attention Matters in seq2seq Learning KCU -

* Enables decoder to focus on the most relevant source words.

* Decoder can directly access source states instead of relying only on a
single vector —solves the bottleneck problem.

* Provides shortcuts to distant source positions — mitigates vanishing
gradients.

* Attention weights show which source words the decoder attends to.
 Implicit alignment emerges naturally — no explicit alignment model needed.
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General Definition of Attention KCU e

* Definition: Given a set of value vectors and a query vector, attention
computes a weighted sum of the values, with weights determined by
the query.

* Intuition:

* Produces a selective summary of the values, guided by the query.

* Provides a fixed-size representation of an arbitrary set of vectors (the values),
conditioned on another vector (the query).
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Mechanics of Attention E‘c’f§

cccccccccc

 We start with:
d
* A set of values hi,...,hy € R™

e A query 8 c Rd2

Step 1: Compute attention scores (logits)

el =[sl'hy,...,sThy] € RY
Step 2: Apply softmax — attention distribution (attention weights)
a = softmax(e) € RY e c RY

Step 3: Take the weighted sum of values — attention output (context vector)

N
a=) ah; eR® a € R%
=1



Attention Variants KOl Lz

eeeeeeeeee

Basic dot-product attention: e; = SThi cER
* Note: thisassumes d; = d,
* Thisis the version we saw earlier

M I [] Il u [ : . T
ultiplicative attention e, =8 Whi cR
« Where W € R%1*%z s 3 weight matrix

Additive attention: e; = v tanh(Wih; + Wys) € R
» Where W, € R%X41 W, € R%*% gre weight matrices and v € R%2 is a weight
vector

More information: http://ruder.io/deep-learning-nlp-best-practices/index.html#attention
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Interim Summary KUz

* Sequence-to-Sequence (seq2seq) architecture

* Two RNNs (encoder-decoder)
* End-to-end training

* Attention mechanism

* Only attend to a small part of the input sequence when generating the output at
each time step

 Attention variants
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Part lll: Transformer and LLMs

* The Transformer Architecture

« Language Models Built on Transformer
* LLMTraining Paradigms

e LLM Evaluation
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Output

Probabilities
|
| Softmax )
1
Linear |}
Ve
| Add & Norm ]4\\
Feed
Forward
r
e I ~ [ Add & Norm Je~
—>(Add & Norm Mult-Head
Feed Attention
Forward N ) Nx
| J~
Add & Norm
N x I
—>{_Add & Norm J VI
Multi-Head Multi-Head
Attention Attention
o J —)
Positional Position:
| D & .
Encoding Encodin
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

The Transformer
Architecture

Vaswani et al., Attention Is All You Need. NeurIPS 2017.
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Transformer Overview

| am a student

(f

\S

ENCODERS

J

t
1

-

DECODERS

\\

)

je suis étudiant

https://jalammar.github.io/illustrated-transformer/

>

NATURAL
KCL s
PROCESSING

OUTPUT [I am a ﬁudent]

(7 ? 3)
( ENCODER > DECODER J
4 4
[ ENCODER DECODER ]
4 4
( ENCODER DECODER J
4 4
[ ENCODER DECODER J
) )

[ ENCODER DECODER ]
) )

[ ENCODER DECODER J
_ J

t

INPUT [Je

suis étudiant]



https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer Overview

ENCODER A
| |
( N
Feed Forward
\_ )
A
f N
Self-Attention
\L )

KCU. 2
DECODER f
. R
Feed Forward
Y y
A
(~ o
Encoder-Decoder Attention
\_ . J
i R
Self-Attention
\_ _J

t

https://jalammar.github.io/illustrated-transformer/

t
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ssssssssss

Transtformer Basics — Self-Attention Layer ke e

* Step 1: create three vectors (Query g, Key k, Value v) from each of the

encoder’s input vectors x
q= W k= W v=W'x

Where g € R%, k € R%, v € R%

Query [TT] [T [T [T (1]

Value [ [T1] [TT] [TT] [TT]
i r r r T

o ® 0

The Hobbit is a classic.
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Transtformer Basics — Self-Attention Layer i

eeeeeeeeee

* Step 2: generate output based on the dot-product
attention

Inputs: a query g and a set of key-value (k-v) pairs in other
word positions

Output: weighted sum of values, where weight of each T N e .
value is computed by an inner product of the query ' : B

and the corresponding key Value* T- T- * *

eCI'ki
A(CI;K;V) — z vl """""""" F S iy

™~
i Z] eq.kj Query [D:D_./T T T T
If we have multiple queries g, we stack them ina matrix Q  Key E:TD ELT—_D ELT—_D D:TD [I%I:I
A(0Q,K,V) = softmax(QKT)V ® ee
The  Hobbit is a classic.
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Scaled Dot-Product Attention 9!{>

ssssssssss

* Problem: As d, (dimension of g and k) increases, the variance of qTk increases. This

causes

* some values inside the softmax become large, leading to the softmax becoming very peaked,

* hence its gradient becomes smaller. f
[ Matvul
1 Y
« Solution: Scale by length of query/key vectors: [ SoftMax |
4
okT Mask (opt.)
AQ,K,V) = softmax(F)V
“ Scale
[ Matvul |
t 1
Q KV
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Self-attention and Multi-head attention 9!{>

ssssssssss

* Problem: Only one way for words to interact with others

 Solution: Multi-head attention L‘f
* Firstmap Q, K,V into h many lower-dimensional spaces via W oL
matrices; T
* Then apply attention, then concatenate outputs and pipe [ Concat
through linear layer. : TT .
Scaled Dot-Product H
Attention
MultiHead(Q, K, V) = Concat(heady, ..., heady, )W © - _._E - , E -

where head; = Attention(QWiQ, KWZ-K : VW,L-V) Linear Linear Linear
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Attention visualisation: Implicit anaphora resolution k(%

ssssssssss

T . o

o) E o v @

2 T o @ 2 Z 5 0 w & o ©

— = 8 = - © T O £ = B =
E*—:w

o) E c » 0 )

2 s g @ 2Z T oo & o 3B

- = 2 =  ® T O £ = £ =

The encoder self-attention distribution for the word “it” from the gth to the 6th layer of a
Transformer trained on English to French translation (one of eight attention heads).

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
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Transtformer Basics — Self-Attention Layer KUz

X 0 e o0 CX ] ®e
The Hobbit is a classic.



Transtformer Basics — Self-Attention Layer

CX 0 e o0 CX)
The Hobbit is a

>

NATURAL
K‘ L LANGUAGE
PROCESSING
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Encoder Input U

* Actual word representations are byte-pair encodings

 Also added is a positional encoding so same words at different locations have
different overall representations:

POSITIONAL 1 1 084 [N 1 Il 0.0002| -0.42 R
ENCODING
- - -
EMBEDDINGS X1 X2 X3
INPUT Je Suis étudiant

https://jalammar.github.io/illustrated-transformer/ 94
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Encoder Input... U

* Byte-pair encoding
* Asimple form of data compression in which the most common pair of consecutive bytes of
data is replaced with a byte that does not occur within that data.
* E.g., to encode the data “aaabdaaabac”

* The byte pair "aa" occurs most often
* We replace it by a byte that is not used in the data, say, "Z".
* Now the data become: “ZabdZabac” where Z=aa

* Positional encoding
PE(pos,2z‘) — Sin(p03/100002i/dmodel)
PE(pos,2z'-|—1) — COS(pOS/lOOOO2i/dmodel)

* where pos is the position and i is the dimension, d,;,,4¢; is the dimension of the word
embedding.
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Complete the Transformer Block KO

* Each block has two “sublayers”
* Multi-head attention

* 2-layer feed-forward neural network (with Relu)

* Each of these two steps also has:

* Residual (short-circuit) connection

ssssssssss

\J L 4
z1 [ z; [
4 Add & Normalize A
X
w| ,» LayerNorm( + )
HE
al: A A
o []
z| : :
' ( Self-Attention )
: A 7y
POSITIONAL é é
ENCODING
X1|:D:|:| sz
Thinking Machines

6
https://jalammar.github.io/illustrated-transformer/ 9
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Complete the Transformer Block

* Each block has two “sublayers”

Multi-head attention

2-layer feed-forward neural
network (with Relu)

* Each of these two steps also has:

Ba et al.,

Residual (short-circuit) connection

LayerNorm: normalizes the inputs
across the features to have mean o
and variance 1

Layer Normalization. arxiv:1607.06450, 2016.

Layer Normalization

batch
1||[3l||6
21 2|2
o/||1/]||5
all|6fl|1
5!1(2]|]3
1/|]|0/||1
mean (2|3 |3 Same for all
std 211212 feature dimensions

>

NATURAL
KCL.&5
PROCESSING
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Complete Encoder

* For encoder, at each block, we use the same Q, KandV from the previous layer

* Blocks are repeated 6 times

ENCODER #2 k\

ENCODER #1 f

https://jalammar.github.io/illustrated-transformer/

r
7 N

Feed Forward
Neural Network
z [

[ Self-Attention ]
\ 3 3 J
x: [ x [
Thinking Machines

ENCODER

4

ENCODER

[

ENCODER

[

ENCODER

4

ENCODER

T

ENCODER

A

98


https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer Decoder

« Masked decoder self-attention is only allowed to
attend to earlier positions in the output sequence.

This is done by masking future positions

 Encoder-Decoder Attention, where gueries
come from previous decoder layer and keys and
values come from output of encoder

» Blocks repeated 6 times

>

DECODER f

Feed Forward

4

Encoder-Decoder Attention

4

Self-Attention

J

( N Y( )

t
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Transformer Decoder KCU

Decoding time step:@Z 3456 OUTPUT

f

r
( Linear + Softmax

)

T

( ENCODER ) ) ( DECODER J
)

L )
( ENCODER J ( DECODER
o
EMBEDDING
witTHTIMe  [LITT  [ICTT] [T
SIGNAL
EMBEDDINGS LLIT] LLIT1] LLT1]
INPUT Je suis  étudiant
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Transformer Decoder

Decoding time step: 1@3 4 56

OUTPUT

f

Kencdec

Vencdec

1]

C

Linear + Softmax

T

ENCODERS DECODERS
K
EMBEDDING t t t
WITHTIME [ [T [l 1I11]
SIGNAL

EMBEDDINGS [(I11] (1111 I 1J 1]

e suis  étudiant PREVIOUS

INPUT J OUTPUTS

https://jalammar.github.io/illustrated-transformer/

>
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Tips and Tricks of the Transformer KCUs

* Details in paper:
* Byte-pair encodings

Checkpoint averaging

ADAM optimizer with learning rate changes

Dropout during training at every layer just before adding residual

Label smoothing
Auto-regressive decoding with beam search and length penalties
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Improvement on Transformer — (Vl§
Rotary Position Embeddmg (ROPE) KC L

ssssssssss

* It multiplies the keys and queries at every attention layer by sinusoidal embeddings.

R;q;))'R K T(RTR )k ; R,_Kk;
Oti,jzsoftmax(( 9i) R J) = softmax (q,( i R)) J) = softmax (q, It )
VD V) VD

[cos(i6;) —sin(i6) 0 0 0 0 5 3 e 5 5 5 5 1 5 0 '
sin(i6;) cos(i®) 0 0o .. 0 0 : X', '\"‘ i
0 0  cos(i6) —sin(i6,) ... 0 0 ) X5 :
Ri=| 0 0 sin(i6y)  cos(i6,) 0 0 i (X1, X5) m :
) : ; ; h : : : X'1 X (x'y, x'5) ¢
0 0 0 0 ... cos(ifpj,) —sin(ifp,) ' m '
0 0 0 0 ... sin(i@py) cos(ibp)2) | E Position E
| PSS WS S S GPRRCONSUELIEY £ S ;
* The rotary encoding rotates different Ennanced | SRR --- B \1]
representation dimensions by 6. Tanstormer (1] -+ (T 100 2
el . . . . with [ T[T ]---[ 1 []] 3 —
* Fortwo nearby positions, i.e. small distance i — j, sy (LT (TTT . e (T
the rotation R;_; will be small. e e o4
Embedding [ [ T [ ]--- [ [ [[T] 6 PN --- O
Query / Key Position Position Eoncoded Query / Key

10
Su et al., RoFormer: Enhanced Transformer with Rotary Position Embedding. arxiv:2104.09864, 2021. 3



https://arxiv.org/abs/2104.09864

Language Models
Built on Transtormer

:‘\l v-‘ \

o
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Modern Language Models (Vl>

- mostly built on the Transformer architecture KCL.==

* Encoder-only models (e.qg., BERT, RoBERTa, ALBERT)
 Bidirectional attention

* Encoder-decoder models (e.g., T5, BART, Flan-Tx)
* Encoder: Bidirectional attention
* Decoder:

1. Cross-attention to the encoder hidden states
2. Unidirectional attention mask for sequence generation
* i.e., each token only attends to the past tokens and itself

* Decoder-only models (e.qg., GPT-x models, OPT, BLOOM, Gopher)
* Using the unidirectional attention mask
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Bidirectional Encoder Representations from Transformers (V[>

* BERT = Encoder of Transformer

. . Qutput
* Learn from a large text corpus without annotation
24 ENCODER
Encode oo
L) Forward
r (_: (Add & Norm :
fe h —{ Add & Norm } Mult-Head
4 ENCODER Feed Attention
12 ENCODER & ) Forward Nx
d E il |
o6 ® 3 ENCODER & ( l|=£Add&Norm Masked
9 J Multi-Head Multi-Head
2 ( ENCODER ) 2 ENCODER S 1 =)
\ J Posilional D Positional
e ) Encoding € Encoding
1 ENCODER 1 ENCODER Tnput Output
\. J Embedding Embedding
Inputs Qutputs
BERTgAse BERTarGE (shifred right]
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BERT Training — Masked Language Model 4

0.1%
Use the output of the b | Aardvark
§ s ossible classes: |
maskeq word’s position All English words | 10% | Improvisation
to predict the masked word
0% | Zyzzyva

FFNN + Softmax

2 3 4 [ °e 512T
a )
® O
J

\_
Randomly mask T T T T T T T T eoo T

15% of tokens

[CLS] Let's  stick to  [MASK] in this skit
Input L R
[CLS] |Lets stick to improvisation in this skit

BERT's clever language modeling task masks 15% of words in the input and asks the model to predict the missing word.
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BERT Training — Two-Sentence Task 4

Predict likelihood . -
that sentence B
belongs after
99% NotNext
sentence A
FFNN + Softmax
&
2 3 4 e sz
( L
® ©
BERT

| \_
Tokenized T T T T T T T T cee T

lnlet [CLS) the man  [MASK] to the store  [SEP]
lnpUt [CLS] the man [MASK] to the store [SEP] penguin [MASK] are flightless birds [SEP]
Sentence A Sentence B

The second task BERT is pre-trained on is a two-sentence classification task. The tokenization is oversimplified in this graphic as BERT
actually uses WordPieces as tokens rather than words --- so some words are broken down into smaller chunks.
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BERT — Extract contextualised word embeddings e
Generate Contexualized Embeddings The output of each encoder layer along
g m— m— E— — — e— E— E—— E— E— oy, each token’s path can be used as a

feature representing that token.

I | I B
T ? T T T eeo e eeo e eeo e

I, (( | T ) | B R

| [TI 11| CLr | 0 O

(] OO [T 1]

Iz( T J | 11 T I
|LLrLu i | e o

|1( T ) I (T [T [T

| | | | | | I O] OO
W 2| 3| 4 512 I O] CLL]

I [CLS] Help Prince Mayuko I Help - Mayuko

| BERT |

\ / But which one should we use?
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BERT — Extract contextualised word embeddings KO

PROCESSING

What is the best contextualized embedding for “Help” in that context?
For named-entity recognition task CoNLL-2003 NER
Dev F1 Score

I 1 1) ) First Layer (I I 91.0
L Last Hidden Layer 175 B 5 i | 94.9
Ll 1
T Sum All 12 EEEE
Layers + 955
[ [= l
] o
d
Second-to-Last
[ Hidden Layer R 25:6
CI 111 —
- S TadiE [ I I
um Last Four +
Hidden — 95.9
I I I
Help
CRGCHL LA T e 96.1

Four Hidden
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Encoder-Decoder Model: T5

(o]
3+
&
a
@)
()
pd
w
h
K-»( Add & Normalize
++ ]
o :‘ ( Feed Forward ) ( Feed F:rward
Q] “cccsscsssfuocsssccssnssssnsnnsnss
@)
v »( Add & Normalize
Y ) )
E ( Self-Attention
X e e e 7

POSITIONAL
ENCODING

x1 [

Thinking Machines

https://jalammar.qgithub.io/illustrated-transformer/

‘e
o
-----

KCU. 2
Softmax )
kN
Linear )
7y
DECODER #2
4 4
Add & Normalize )

............................ +
,#( Add & Normalize )
5 ) )
.‘"( Encoder-Decoder Attention )
DI ; SECLCCLCL I L LTI LY L
')( Add & Normalize )
' [ L)
E ( Self-Attention )
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T5: Text-to-Text Transfer Transformer (Vl>

[Task-specific prefix]: [Input text] —> —> [output text]

["translate English to German: That is good."

"Das ist gut."]
course is jumping well."

[ "cola sentence: The

"not acceptable"]

"stsb sentencel: The rhino grazed
on the grass. sentence2: A rhino
is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

of severe weather in mississippi.."

"six people hospitalized after
a storm in attala county."

112
Raffel et al., Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. arxiv:1910.10683, 2019.
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Decoder-only Model: OpenAl’'s GPT-x 9!{§

ssssssssss

* Use the decoder layers from the Transformer architecture.
* Training objective: predict the next word using massive (unlabelled) data.

- & N

6 ( DECODER BLOCK ]
: t 1
2 ( DECODER BLOCK J
%Transformer—Deooder o Lok
3 [ Feed Forward Neural Network )
L | ’ ( Masked Self-Attention )
<s> robot must obey ... | FSSEESEEERE e SR SR R y
1 2 3 4 4000
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Brown et al., Language models are few-shot learners. NeurlPS 2020. Figure source: https://jalammar.qgithub.io/illustrated-gpt2/
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Mixture of Experts (MoE) Models gc,{>

* Mixtral 8xX7B — a Sparse Mixture of Experts language model
* A decoder-only model
* The feedforward block picks from a set of 8 distinct groups of parameters.

» At every layer, for every token, a router network chooses two of these groups
(the “"experts”) to process the token and combine their output additively.

 The model only uses a fraction of the total set of parameters per token.

Mixture of Experts Layer

égating
iweights

: i g : Y
inputs outputs
—> router —I:I L{?—'
: expert

11
Jiang et al., Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024 4
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LLM Iraining
Paradigms
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Learning Task-Specific Models KUz

oo | won't say much about the books...

Reviewed in the United Kingdom on 15 June 2020

Verified Purchase

| won't say much about the books apart from that they are an incredible read, and some will argue that
they are some of the best books ever written.

| will review the packaging though. The 4 books all come into a thick cardboard sleeve. This is thicker and
better quality than most sleeves that come with a lot of books, which is a nice thing and makes the books

look more expensive. The artwork on the covers is simple but effective.

Any LOTR fan will be happy to receive this boxes set

Book reviews

ChatGPT is an Al chatbot developed by
OpenAl and released in November 2022.

|I~ Label: positive ‘

Sentiment
Classification

Product: ChatGPT
|I~ . .

Organisation: OpenAl
Information Date: November 2022
Extraction
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Pre-trained Language Models

Numbers of Parameters (in Millions)

10000

MegatronLM
8300
o
»,
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5000
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pen Grover-
2500 GPT-2 Mega
A2 ® ## Google Al et 1500 mm ﬁ 1500 ﬁ
O enAI ranstormer PY . Py Q
ZPT BERT-Large ELMo MT-DNN XLM 665 ROBERTa —
ESZ“ 110 340 465 330 330 355  DistiBERT
o XLNET
() [ J C . L ]
04 ‘ Metton -
Q,\QJ Q,\Cb Q,\QJ Q,\C') Q,\O, University Q\Q
N N & ¢ N N
Q N 0 > ) S
v O ~N W N
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Sanh, V., et al., 2019. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.
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Pre-training and then Fine-Tuning

Sentiment Analysis

Information Extraction

KCL.#

Large Language Model
(LLM)

Summarisation

(a) Language model pre-training (b) Language model fine-tuning
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Pre-trained Large Language Models (LLMs) U

G s G Gshara Publicly Available
— 2019 — 2020 / 3 mT5 s% PanGu-a 'c?ﬁ‘ Ernie 3.0
/ — 2021 HUAWEI Am
= a PLUG Jurassic-1
arra @ o ~
Codex @ —_— E 3AAI L
N G FLAN -~ masnn CPM-2
T0 O 9-10 {7 LaMDA
. I —_ mnspur Yuan 1.0
Anthropic i HyperCLOVA 355" \ @ AlphaCode
WebGPT @ e
P \ @ Chinchilla
Ernie 3.0 Titan m InstructGPT @ 2022 } CodeGeeX
(5 uL: b Sparrow
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GLaM s MT-NLG & OPT 00 \ (g FalM CRL o (wesrs| Vieuna
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OPT-IML (X) ChatGPT GPT-4 @
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Zhao, W.X., et al., 2023. A survey of large language models. arXiv preprint arXiv:2303.18223.



In-Context Learning KUz

* LLM learns to perform a task during inference by being given examples or
instructions in the input prompt, without parameter update.

* Users provide examples (few-shot) or instructions (zero-shot) in the prompt.

Q: What is the capital of France?
A: Paris

Q: What is the capital of Italy? I
A: Rome

London J

Q: What is the capital of UK?
A

120
Brown et al., 2020. Lanqguage models are few-shot learners. NeurIPS, 33, pp.1877-1901.
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Instruction Tuning

Fine-tuning pre-trained LLMs on
formatted task instances.

* Model learns to follow instructions
better.

* Improves zero-shot performance on
unseen tasks.

| Definition |

-

Task Instruction

“... Given an utterance and recent dialogue context containing past 3
utterances (wherever available), output ‘Yes’ if the utterance
contains the small-talk strategy, otherwise output ‘No’. Small-talk is
a cooperative negotiation strategy. It is used for discussing topics
apart from the negotiation, to build a rapport with the opponent.”

G(:_[ Positive Examples ‘

* Input: “Context: ... ‘That's fantastic, I'm glad we came to
something we both agree with.” Utterance: ‘Me too. I hope you
have a wonderful camping trip.””

* Qutput: “Yes”

* Explanation: “The participant engages in small talk when wishing

V-

\

AN

”E[ Negative Examples ‘

their opponent to have a wonderful trip.”

* Input: “Context: ... ‘Sounds good, I need food the most, what is
your most needed item?!’ Utterance: ‘My item is food too’.”

* Output: “Yes”

* Explanation: “The utterance only takes the negotiation forward

and there is no side talk. Hence, the correct answer is ‘No’.”

A

Zhang et al. Instruction Tuning for Large Language Models: A Survey. arXiv 2308.10792, 2024.
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Alignment Tuning ke

* Adjusting an LLM's behaviour to better align with human values, intentions, and
preferences (e.g., around helpfulness, honesty, and safety).

* E.g., Reinforcement Learning from Human Feedback (RLHF)
1. Human annotators rank different model responses.
2. Areward model is trained to reflect these preferences.

3. TheLLMisthen fine-tuned using reinforcement learning (e.g., PPO) to produce more
preferred outputs.
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Ali gnment Tuning KCL 5

Step1 Step 2 Step 3
Collect demonstration data, Collect comparison data, and Optimize a policy against the
and train a supervised policy. train a reward model. reward model using

reinforcement learning.

A prompt is sample from A prompt and several A new prompt is sampled a
our prompt dataset. Explain the moon model outputs are Explain the moon from the dataset. Write a story
landing to a 6 year old sampled. landing to a 6 year old about frogs
Y A 0 \
Explain gravity... Explain war.. PPO
The policy generates an O,
o o Cap RN, -
A labeler demonstrates Moon is natural People went to output. \W
the desired output satellite of... the moon... ® ®
behavior. Z2
Some people went '
to the moon...
Once upon a time...
A labeler ranks the
\J outputs from best
to worst.
SFT =
. & 0-0-0-0 v
LRI RM
This data is used to .W. The reward model . 0
fine-tune GPT-3 with [ fa v calculates a reward for ./)?.&.
supervised learning. 2 the output. W
B RM
EIE[E (Sdatar 2252
This data is used to ./)?5\.\. 1/
train our reward model. \?52(./ ne e ardli s icedte
update the policy using rk 7

0-0-0:-0 PPO.

12
Ouyang et al. Training language models to follow instructions with human feedback. arXiv 2203.02155, 2022. 3
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Parameter-Efficient
M Fine-Tuning
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Parameter-Efficient Fine-Tuning (PEFT) KCU

* LLMs require a lot of memory storage to store, and many high-end GPUs
to fine-tune
* Llama 70B needs 130GB storage and 4 A100-40G to fine-tune.

» Parameter-efficient fine tuning can make LLMs more accessible.

* Only fine tune a subset of the parameters for each task.
* A 33B model can be fine-tuned on a 24GB consumer GPU in less than 12 hours.
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t ____________ ™) : e 1 ) : e 1 ) : e j
: Y Y Y \-i : N\ N\ : N\ : Y ",'“ 7 ( —
:[ MHA ) kAdapter) \ FFN ) kAdapter) ] ! [ Prefix *[ Layer #N ) ! [ Layer #N ) ! | Layer #N )
Rt S | T | T i t
_____________ b o ____. 1 4 1 4 1 LoRA r K
: Y Y Y \: : N N\ : p : w7 ( p
:[ MHA ) kAdapter) \ FFN ) kAdapter) | [ Prefix *[ Layer #1 ) ! [ Layer #1 ) ! | Layer #1 )
aininininininisininiininl Yalnininisinisiiiniinlie v : . 7 : . v : . ’
1 1 1 1
[ Input ] i [ Input i [ Prompt I Input ] i Input
(a) Adapter Tuning : (b) Prefix Tuning : (c) Prompt Tuning : (d) Low-Rank Adapation

Figure from (Zhao et al., 2023)

* Adapter Tuning
* Add adapter layers in between the transformer layers of a large model.
* During fine-tuning, only tune the adapter layers.
* PrefixTuning
* Learns asequence of prefixes that are prepended at each transformer layer.
* Learn an optimal prefix for each task.
* Prompt Tuning
* learns a single prompt representation that is prepended to the embedded input.

126
He et al., Towards a unified view of parameter-efficient transfer learning. ICLR 2022.
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LoRA: Low-Rank Adaptation ﬁ‘c’{§

h=Wyx + AWx

Pretrained
Weights

* Wy € R**¥ is a weight matrix in the pre-trained model|,
AW is an adaptor of the same size.

dxd
* W, is frozen, only AW is updated. WeR

B € R*"and A € R"**are low rank matrices,
r < min(d, k).

Bis initialised as zero and A uses random Gaussian.

127
Hu et al., LoRA: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.
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LoRA - How to adjust the hyperparameters KCU =

ssssssssss

* Rank ()

* Lower r — fewer trainable parameters.

* Little statistical difference between r = 8 and 256 when

h | I
applied to all layers. a I:E:l %

* Typical values: 8, 16, 32.

Pretrained
* Scaling () Weights
* When adaptors are merged back, original weights are
scaledby a /. W € R4xd
* Larger @ — stronger adaptor influence (similar to learnir
rate).

e Typical values: 2r, r, 0.57, 0.25T.

* Dropout

* Dropout = 0.05 helps smaller models (7B, 13B).

128
Hu et al., LoRA: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.
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PEFT - QLoRA “">

* LoRA —the full LLM still needs to be loaded
first which consumes lots of memory.

Sign Range Precision
* QLoRA: Efficient Finetuning of Quantised h
LLMs. —
TF32 Range
TENSOR FLOAT 32 (TF32) _
* Quantisation —techniques for performing 12 recisin

computations and storing tensors at lower bit

width than floating point precision. FP16

I
[ R )

Dettmers et al., QLoRA: Efficient finetuning of quantized LLMs. NeurlIPS, 36, 2023.
Frantar et al., GPTQ: Accurate post-training quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.
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PEFT - QLoRA “”>

* QLoRA conducts LoRA fine-tuning based on a quantised model

* Two novel techniques are used:

1. 4-bit NormalFloat: Instead of quantising uniformly, it estimates the quantile
of the input tensor through the empirical cumulative distribution function.

2. Double quantisation: The quantisation constants are also quantised.

* The forward and backward passes are performed in 16-bit.

130
Dettmers et al., QLoRA: Efficient finetuning of quantized LLMs. NeurlIPS, 36, 2023.
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Mathematical Reasoning — AIME 2025

Best in High School Math (AIME 2025) ©

white chips and 25 indistinguishable black
chips. Find the number of ways to place
some of these chips in the 25 unit cells of a
5x%5 grid such that:
* each cell contains at most one chip all
chips in the same row; and
* all chips in the same column have the
same colour;
* any additional chip placed on the grid
would violate one or more of the
previous two conditions.

Question: There is a collection of 25 indistinguishable
4+

E}
o
S
=
@
5
(3
:
()

_ 132
https://www.vellum.ai/llm-leaderboard

https://huggingface.co/datasets/Maxwell-Jia/AIME 2024
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Humanity's Last Exam (HLE) ECI{§

Best Overall (Humanity's Last Exam) ©®

0 Mathematics
Question:
The set of natural transformations between two functors

F,G: C — D can be expressed as the end

Nat(F, G) = /A Homp (F(A), G(A)).

Define set of natural cotransformations from F' to G to be the

coend g
8
CoNat(F, G) %/ Homyp(F(A), G(A)). S
o
3
Let:

- F = B,(X4)./ be the under co-category of the nerve of the
delooping of the symmetric group X4 on 4 letters under the
unique 0-simplex * of B4X4.

- G = B,(X7),/ be the under co-category nerve of the
delooping of the symmetric group Y7 on 7 letters under the
unigue 0-simplex * of B¢X7.

How many natural cotransformations are there between F' and

G?
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ChatbotArena E‘c’{

E Model A G Model B

UEBEI U RE sl L G EITE What are the most critical challenges of LLM evaluation

D D
et e e ege rmowes (LK) s eopleend ereltig Evaluating Large Language Models (LLMs) is a complex and multifaceted task.
SENCIES, e GUR e N e Here are some of the most critical challenges associated with LLM evaluation:
1. Lack of Standardized Benchmarks 1. Lack of Standardised Metrics
o Many benchmarks exist (e.g., MMLU, BIG-bench), but no single standard o Issue: There is no universally accepted set of metrics for evaluating LLMs.
covers all important aspects, especially for new or domain-specific tasks. Different researchers and organisations use different benchmarks and metrics,

. . . king it difficult t dels.
o Benchmarks can quickly become "solved" as models improve, making MERTZ S R e e
them less useful for differentiation. o Impact: This lack of standardisation hampers the ability to objectively assess
and compare the performance of different LLMs.
2. Evaluation of Factuality and Hallucination 2 Benchmark Limitations
O" LLMS' frec'1uen"tly e eukdlssnuily B igas it naiien o Issue: Existing benchmarks often do not cover the full range of capabilities
("hallucinations"). and use cases for LLMs. They may focus on specific tasks like question
o Determining the factual accuracy of generated text is difficult, especially answering, summarisation, or language translation, but miss others.
for open-ended or niche queries. o Impact: Models may perform well on specific benchmarks but fail in real-

world applications that require a broader set of skills.

3. Measuring Reasoning and Complex Task Performance
) . ) 3. Bias and Fairness
o Many evaluations focus on simple QA or completion, but complex

reasoning, multi-hop logic, and real-world problem-solving are harder to test
and automate.

o Issue: LLMs can inherit and even amplify biases present in their training data.
Evaluating for bias and fairness is challenging because it requires identifying and
mitigating biases across multiple dimensions (e.g., gender, race, ethnicity).

1
https://Imarena.ai 34



https://lmarena.ai/?leaderboard

ChatbotArena LLM Leaderboard 9!{>

PROCESSING

Q Model v 206/206 Overall P Hard Prompts 1) Coding Tl Math  TJ Creative Writing Instruction Following Longer Query Tl Multi-Turn T
G gemini-2.5-pro-.. 1 1 il X il il 15 1
G gemini-2.5-pro-.. 2 / 2 1 1 1 1 1
@ 03-2025-04-16 2 2 2 1 3 S 6 4
© chatgpt-do-late.. 4 4 2 6 2 3 L il
® ept-a.5-preview. 4 4 2 4 3 3 2 1
G gemini-2.5-flas.. 5 4 4 1L 2 8 2 6
A\ claude-opus-4-2.. 6 2 2 3 2 3 1 &
@ gpt-4.1-2025-04.. 8 4 5 14 6 7 2 5
G gemini-2.5-flas.. 8 7 12 5 5) 3 7 6
Xl erok-3-preview-.. 8 Vil 5 11 7 9 5 7
A\ claude-sonnet-4.. 9 8 3 6 7 7 6 5
@ o4-mini-2025-04.. 9 8 7 1 14 14 15 10
@ deepseek-v3-0324 10 8 5 14 7/ 10 8 5
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ARC-AGI-2 - A Next-Gen Reasoning Benchmark KL o

ssssssssss

Evaluate the efficiency and capability of state- HEE fen
of-the-art Al reasoning systems.

Key Features:
* Multi-step, abstract reasoning tasks
* Real-world inspired challenges

* Minimal reliance on superficial cues

https://arcprize.org/
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ARC'AGI Leaderboard KCL e

PROCESSING

o @ Human Panel

90% — @ ARC-AGI-1
ARC Prize - Grand Prize :
ARC-AGI-2

@ Avg. Mturker

@ ARChitects

@ Deepseek R1 ® Icecuber

I
$1

COST PER TASK (8)

1
https://arcprize.org/ Y
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Foundation of LLM Evaluation KCU

\g v —

—/ v -

— -

-
What to evaluate? Where to evaluate? How to evaluation?
Evaluation Tasks Evaluation Benchmarks Evaluation Process

Chang et al., A survey on evaluation of large language models. ACM Transactions on Intelligent Systems and Technology, 2024.
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https://dl.acm.org/doi/abs/10.1145/3641289

Evaluation Tasks

Language Understanding

Knowledge and Reasoning

Dialogue and Interaction

Safety and Robustness

>

.
NATURAL

K‘ l LANGUAGE
ssssssssss

e Reading Comprehension, Natural Language Inference (NLI),
Summarization, Coreference Resolution, Sentiment Analysis

e Example Benchmarks: GLUE, SuperGLUE, C-Eval

e General Knowledge, Subject-Specific Knowledge

e Common-Sense Reasoning, Mathematical Reasoning...
e Fact Verification

e Example Benchmarks: MMLU, BIG-bench, FEVER

* Instruction Following

* Helpfulness, Harmlessness, Honesty (HHH)

* Dialogue Coherence and Engagement

e Example Benchmarks: MT-Bench, Chatbot Arena, AlpacaEval

* Toxicity Detection, Bias and Fairness Testing

* Value Alignment

* Adversarial Robustness

* Example Benchmarks: SafetyBench, TRUSTGPT, AdvBench
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Evaluation Tasks

Multimodal Understanding

Specialised Abilities

Out-of-Distribution (OOD)
and Robustness

* Image + Text Reasoning

e Visual Question-Answering

e Chart/Table Reasoning

e Example Benchmarks: MMBench, SEED-Bench, MMMU

e Theory of Mind (ToM) Reasoning
e Emotion Understanding

e Ethical and Moral Reasoning

e Tool Use (API Calls, Planning)

e Example Benchmarks: ToMi, EmotionBench, API-Bank

e Generalisation to Unseen Data

e Domain Transfer

e Prompt Robustness

e Example Benchmarks: GLUE-X, BOSS, PromptBench
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Evaluation Benchmarks KCU

KMMLU, C-Eval, OpenLLM, A 4 KET Choi AD A (- )
DynaBench, AlpacaEval, HELM SOCKET, Choice-75, CUAD,
y ! ! ! TRUSTGPT, MATH, APPS, MMBench, SEED-Bench,
Chatbot Arena, MT-Bench, BIG- . h
bench Pandal.M. BOSS. CLUE- CELLO, EmotionBench, M3Exam, ToolBench,
X KoLIA AGIEvalI ! CMMLU, API-Bank, M3KE, MathVista, MM-Vet, LAMM,
' ' ' UHGEval, ARB, MultiMedQA, LVLM-eHub
PromptBench,, LLMEval, CVALUES. CMB. MINT
GAOKAO-Bench . ! ! !
\_ Y, Dialogue CoT, SafetyBench \_ Y,
\— J

141
Chang et al., A survey on evaluation of large language models. ACM Transactions on Intelligent Systems and Technology, 2024. 4
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General Benchmarks

Benchmark
MMLU
BIG-bench
HELM

OpenLLM
MT-Bench
AGIEval

AlpacaEval
C-Eval
GAOKAO-Bench
PromptBench
PandaLM

Multitask knowledge and reasoning
Diverse task challenges

Holistic performance (accuracy, fairness)
Public model competitions

Multi-turn dialogue

Standardised exam reasoning
Automated NLP task evaluation

Chinese academic exams (52 subjects)
Advanced reasoning (Gaokao exams)
Prompt engineering evaluation

Subjective qualities (clarity, formality)

Focs ___ Nots

Covers 57 subjects, 15,908 MCQs.
200+ tasks, multi-domain.

Multi-dimensional evaluation.
Leaderboard-style comparisons.
Becoming a general conversational test.
SAT, GRE, LSAT-style tasks.

Focus on robustness and diversity.

Big for multilingual/global benchmarks.
Very difficult knowledge/reasoning test.
Measures prompt adaptability.

Human-like model scoring.
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Specific Benchmarks
Domain __________[Benchmark __JFocss ______________INotes

Medical

Law

Science

Emotion

Theory of Mind (ToM)
Knowledge Reasoning
Safety

Robustness

Value alignment

MultiMedQA
CUAD
ChemBench
EmotionBench
OpenToM
KoLA
SafetyBench
DynaBench

TRUSTGPT

Medical exam QA

Legal contract review

scientific reasoning and problem-
solving across chemistry subfields.

Understanding and recognising
emotions

Some tasks measure ToM reasoning

Semantic knowledge inference

Toxicity, bias, adversarial robustness

Adversarial robustness, closed-loop
systems

Ethics, bias, and value alignment

Highly specialised in healthcare knowledge.

Extracting and understanding clauses.

Evaluate LLMs' ability to understand, reason,
and apply knowledge in chemistry.

Focused on emotional intelligence in dialogue.
Designed tasks simulate ToM scenarios.
Deep reasoning based on general knowledge.

Evaluates safety issues like bias and toxicity.

Evaluates performance in real-time, adversarial
settings.

Evaluates ethical responses and value
consistency.
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Multimodal Benchmark
Benchmark |[Focus ~ |Modalites ~ |Notes |

Evaluation of large vision-language

LVLM-eHUb o dels (LVLMs)
Visual QA, image understanding, scene
Ml reasoning, chart/table interpretation.
ToolBench Multlm_odal task performance (tools,
reasoning)
VQAv2 Visual reasoning via question answerin
(Visual QA) gviaq g
GQA Visual question answering with reasoning
M=2Exam Multimodal, Multiturn, Multilevel
3 Examination Benchmark
ScienceQA  Science reasoning with text, diagrams
MathVista ~ Math + visual understanding

Text + Vision (Images)

Text + science diagrams,
infographics, natural scenes

Text + Images + Other tools
(APIs)

Text + Images

Text + Images

Text + image, tables/graphs

Text + images, diagrams,
tables

Text + diagrams, graphs,
shapes

Targets the integration of vision and language
understanding.

Answering questions based on photos,
diagrams, charts, tables, and screenshots.

Evaluates models on using tools and
reasoning with multiple types of input.

Tests model performance in answering
questions based on images.

Focuses on reasoning through visual contexts,
particularly for logical problem-solving with
images.

Simulates real-world examination scenarios
where multi-step reasoning is needed.

Especially used for science-based multimodal
reasoning.

Combination of visual math reasoning.
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Evaluation Process KCL

Automatic

evaluation

@ Human evaluation

LLM-as-a-Judge

Accuracy: Exact match, Quasi-exact match, F1 score, ROUGE score
Calibrations: Expected calibration error, Area under the curve
Fairness: Demographic parity difference, Equalised odds difference
Robustness: Attack success rate, Performance drop rate

Expert assessment rates outputs on dimensions like accuracy, relevance,
and helpfulness.

Crowdsourced Evaluation gathers judgments from multiple non-expert
evaluators.

Comparative Evaluation presents evaluators with multiple model outputs
to rank or choose between.

Single Model Judging uses a strong LLM to evaluate other model outputs.

Multi-Model Consensus employs multiple LLMs as judges and aggregates their
scores.
Constitutional Al Evaluation trains models specifically for evaluation tasks .
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Evaluation Metrics

1. Accuracy-Based Metrics

 Exact Match (EM): % of answers that exactly match the

ground truth (used in QA like SQUAD, GSM8K).

* Top-k Accuracy: Whether the correct answer appears in

the top k predictions.

* Pass@k: Used in generation tasks — likelihood of
generating a correct solution in k attempts.

2. Text Overlap Metrics
* BLEU /ROUGE / METEOR

* Measure n-gram overlap between model output and
reference texts.

3. Semantic Similarity Metrics
* BERTScore, Natural Language Inference (NLI) score

* Uses contextual embeddings (e.g., via BERT) to
compare semantic similarity between generated and
reference texts.

>

NATURAL
KCL.&5
PROCESSING

5. Log-Likelihood / Perplexity

* Measures how well the model predicts tokens in a
dataset.

« Common in pretraining evaluation, less reliable for
downstream task performance.

4. Win Rate (Arena-Style Comparisons)

* Win Rate: % of times a model wins in head-to-head
matchups.

6. Human Evaluation
* Evaluators judge model outputs for:
* Helpfulness
* Honesty
* Factuality
* Reasoning quality

Harmlessness
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Close-Ended vs. Open-Ended Evaluation KU

* Close-ended evaluation

=1 = OROR o] == |
KO v = v=
Prompt, \\“’/' ¢
Input Query Generated Reference
Output Answer
* Open-ended evaluation
— ° =
= v=
-
o -
Prompt,
Input Query LLM Generated
Output
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Close-Ended Evaluation

Candidate Text: The cat sits on the mat.

T NN

Reference Text: The cat is sitting on the mat.
. J

Text Overlap Metrics
(e.g., BLEU, ROUGE, METEOR, etc.)

>

NATURAL
(e
PROCESSING

2D Visualization of BERT Token Embeddings (PCA)

Jhe

dhe

Fat Jnat
Jhe dhe

sits
£at

Sitting

PCA Component 1

Semantic Similarity Metrics

(e.g., BERTScore, SentenceBERT, BLUERT)
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Close-Ended Evaluation KCU, 55

* Text Overlap Metrics
* Exact Match Accuracy

* Token-Level F1 (Partial token-level overlap between Candidate Text:  The cat sits on the mat.
generated and golden answer)
« BLEU (Bilingual Evaluation Understudy) Reference Text: = The cat is sitting on the mat.

* Calculates the precision for each n-gram level, i.e., the
proportion of n-grams in the candidate text that appears
in the reference texts.

* ROUGE (Recall-Oriented Understudy for Gisting
Evaluation) Exact Match: o
* Focuses on recall-based evaluation by comparing n- Token-Fa: Precision: 5/6, Recall: 5/7, F1: 0.77

grams, word sequences, and word pairs. BLEU: o0.42 (precision-focused, considering n-gram
overlap)

ROUGE-1: 0.77 (recall-focused, unigram overlap)

ROUGE-L: 0.77 (longest common subsequence)

METEOR: 0.88 (accounts for precision, recall,
synonyms, and word order)

* ROUGE-N (n-gram overlap), ROUGE-L (longest common
subsequence).

* METEOR (Metric for Evaluation of Translation with
Explicit ORdering)

* Handles synonyms and word-order variations to improve upon
BLEU's limitations.

Problem: Ignore semantic similarity between the reference and candidate text. 149
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Close-Ended Evaluation KCU

 Semantic Similarity Metrics
* BERTScore

* Compares token embeddings from a pretrained model like BERT; matches each token in
the generated text to the most similar token in the reference.

* SentenceBERT

* Encodes full sentences and measures cosine similarity between them.

* BLUERT

* Trains a model to predict human evaluation scores based on embeddings; fine-tuned
specifically for quality evaluation.
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Open-Ended Evaluation KL

* No single correct answer

Multiple plausible outputs can exist

Focus on evaluating fluency, coherence, relevance, factuality, etc.

Human judgment often needed

e Costly, sometimes inconsistent

LLM-as-a-judge

* Fast and scalable; Can follow complex evaluation rubrics; Correlates well with human judgment in
many cases.

* Vulnerable if the judging prompt is poorly designed; May reflect training data biases

Example Tasks Description

Story Writing Write a short story about space travel

Summarisation Summarise a news article

Dialogue Response Continue a conversation naturally

Code Generation Solve a programming task with multiple valid solutions
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Single Model Judging - LLM-EVAL KCU

» Sinale LLMs aenerate score for different evaluation dimensions (LLM-EVAL)

LLM-Eval
{evaluation schema} - .
Score the following dialogue response gener- Observatlons
ated on a continuous scale from 0.8 to 5.0. ° leferent Scorlng ranges e g 0_5 and 0-100
Context: ! = !
Z: My cat likes to eat cream. o Similar performance, overall better than other baselines.
& : Be careful not to give too much,
though.
Dialogue response : » Different LLMs matter
2: Don't e Lronil: i little bit .
as a treat. o oo o Claude and ChatGPT generally achieve better performance
< across all dimensions when compared to GPT-3.5.

 Different decoding strategies
o Greedy decoding generally achieves better performance
across all evaluation dimensions.

Vv

Appropriateness: 3.0
Content: 2.5
Grammer: 4.0

Relevence: 2.0
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Multi-Model Consensus — ChatEval E‘c,{>

E ﬁ ! & Large Language Model (LLM) Based Agent

Single-Agent method
[ Guestion: How canl | - ala 3 After carelully reviewing the
improve my time '_ e W responses of both responses ..
A manaqemen+ 9k|ll97 = think. ASSISTANT | is better.
ASSISTANT J Improvmgw};,&
| your fime management | Multi-Agent debate

L sklllf; mvolveg N

ASSISTANT 2 Her‘e ar;

| some Hips to improve B g Alter cllscussmg thoroughly with

:" _  } my co-workers, we are
;, your time management, % W convinced that ASSISTANT 2 is J/

w ’like - j better based on the reason ..

1
Chan et al., ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate. ICLR 2024. >3



https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu

Multi-Model Consensus — ChatEval E‘c’f§

cccccccccc

Aice Q\ACarol " Aice K.Bw\‘caro‘ ) )
xNround ) \_ M\f‘wr\dj N round /
(a) One-by-One (b) Simultaneous-Talk (c) Simultaneous-Talk-with-Summarizer

a) The debater agents take turns in a set order to generate their response.

b) The debater agents are prompted to asynchronously generate responses.

c) Additionally employ another LLM as a summarizer and concatenate this
summarization into all debater agents’ chat history slots.

1
Chan et al., ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate. ICLR 2024. >4
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Constitutional Al Evaluation — Prometheus e

* Problems of using proprietary LLMs as an evaluation tool:
* Alack of transparency
* Uncontrolled versioning
* Prohibitive costs

* PROMETHEUS

* a13B LM that aims to induce fine-grained evaluation capability of GPT-4, while being open-
source, reproducible, and inexpensive.
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Prometheus E‘CI{

* An open-source LM evaluator trained on a dataset containing feedback collections.

N D
~ N) /~ N)
C Instruction ) ( Response to Evaluate )
D | busi trat f Title: Online Banking Service FinTech
evelop me a business strategy tor Startup Business Strategy B —
creating a FinTech startup Prometheus
that offers online banking services. Executive Summary:
) Our startup, “DigitalBank”, aims to
- N revolutionize the traditional banking
~ N) L industry by providing an innovative [...] )
CCustomized Score Rubric) N
N
/ N
Does the response consider regulations
and compliance requirements? C Reference Answer )
=
£ %
s . (e ~N
[Score 1] The response disregard Establl§hlng a lflnTech startup tljat offers C e )
regulations and compliance requirements. online banking services requires a
comprehensive strategy to tackle
[Score 2] The response shows minimal various challenges inherent to the industry The response provides
awareness of regulatory compliance, and capitalize on market opportunities. a comprehensive overview.
making several errors. L] |
[Score 3] The response recognizes certain 1. Market Research: [...] Overall, it includes a detailed
regulatory requirements but lacks depth. 2. Regulatory and Compliance: [...] plan of how to start a FinTech
3. Product Development: [...] startup by presenting an
[Score 4] The response mostly considers 4. Service Differentiation: [...] imaginary startup “DigitalBank”.
regulatory compliance, 2 (Gso'tot‘r:‘ﬂar'éeé Strategy: [[]] [...]
with only minor oversights. - Growth and expansion: [... ; ;
7. Sustainability and Trust: [...] H‘i’r‘:‘t’g"r‘zﬂ l';;":g:‘s 20‘1?6'?:"’0‘2"6
[Score 5] The response perfectly . 5 9 y P i
accounts for and integrates These items are important aspects to [...]
regulatory compliance requirements. consider when starting a Fintech startup C Score )
that offers online banking services. )
\_ ) \_ A \_ 3outof 5 Y

Kim et al., Prometheus: Inducing Fine-Grained Evaluation Capability in Language Models. ICLR 2024.
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Goodhart's Law E‘c’{>

"When a measure becomes a target, it ceases to be a good measure.”

* When systems are evaluated based on a specific metric, they often start optimising for that metric directly.

* Asaresult, the metric no longer accurately reflects what it was originally intended to measure.

* Al model evaluations: If a language model is optimised to win
leaderboard rankings, it may overfit to benchmark tasks rather than
Improve general reasoning.
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Put Evaluation into Practice

Choose an
appropriate
benchmark for a
given LLM task or
domain, justifying the
choice against
alternatives.

Design a small-scale
evaluation
experiment —select
prompts, sampling
strategy, and rating
protocol that align
with study goals.

Compute and
interpret key metrics
(e.g., BERTScore,
Win-rate, Pass@k)
and articulate their
limitations.

Critically assess
evaluation results —
spot statistical noise,
annotation bias, or
benchmark leakage
that may invalidate
conclusions.
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Interim Summary KUz

* The Transformer architecture

* Transformer basics — self-attention layer, encoder input, complete encoder,
Transformer decoder

* Improvement on Transformer — Rotary Position Embedding (RoPE)

* Language models built on Transformer
* Encoder-only models — BERT
* Encoder-decoder models —Tg
* Decoder-only models — GPT-x
* Mixture of Experts models — Mixtral 8x7B
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Interim Summary KUz

* LLM training paradigms

* Learning task-specific models
Pre-training and then fine-tuning
In-context learning
Instruction tuning
Alignment tuning

* Parameter-efficient fine-tuning
 Adapter tuning, Prefix tuning, Prompt Tuning, LoRA, QLoRA

* LLM evaluation

 What to evaluate? Evaluation Tasks
* Where to evaluate? Evaluation Benchmarks
* How to evaluation? Evaluation Process
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Email: yulan.he@kcl.ac.uk

Twitter: @yulanhe

KC P;é"g:%i% | W[> https://kclnlp.github.io/
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