
Lecture 2: Encoder-Decoder Models
Yulan He

King’s College London

AthNLP 2025

Artificial Intelligence

Machine Learning

Deep Learning

Generative AI

• John McCarthy – “the science and engineering of
making intelligent machines”.

• Tasks include perception, learning, reasoning,
problem-solving, decision-making.

AI Landscape

Artificial
Intelligence

Machine Learning

Deep Learning

Generative AI

Large
Language

Models
(LLMs)

• Algorithms and models learn from data.
• Learning approaches include supervised,

unsupervised, semi-supervised, and
reinforcement learning.

• Utilises deep artificial neural networks.
• Learns representations of data through

multiple layers.
• Effective for tasks such as image recognition,

natural language processing, etc.

• Focus on creating models to generate new data.
• Examples include Generative Adversarial

Networks (GANs), Variational Autoencoders
(VAEs), Large Language Models (LLMs)

1

2

Generative AI
• Large Language Models

Yang et al., Harnessing the power of LLMs in practice: A survey on ChatGPT and beyond. ACM Transactions on KDD, 18(6), pp.1-32, 2024.

mT5 T0

2019

2018
GPT-1

BERT

Word2Vec
GloVeFastText

Encoder-Only Decoder-Only

2020
Distill
BERT

GPT-2

T5

RoBERTa
ERNIE

XLNet

Encoder-Decoder

BART

2021

DeBERTa
ELECTRA

2022

GPT-Neo

GPT-J

2023

BLOOMZ
OPT-IML

YaLM

Galactica

BLOOM

OPT

GPT-NeoX

LLaMA

Switch

Tk

Flan
T5

ALBERT

GLM

Chat
GLM

ST-MoE

ULMFiTELMo

LLaMA-2-Chat
LLM

Evolutionary
Tree

Open-Source

https://arxiv.org/abs/2304.13712

LLM Capabilities

3
Minaee et al., Large language models: A survey. arXiv preprint arXiv:2402.06196, 2024.

EmergingBasic Augmented

LLM Capabilities

Reasoning

Coding

Comprehension

Multilingual

Tool
utilization

World
knowledge

Instruction
following In-context

learning
Interacting
with users

Self-improvement

Multi choice QAWikipedia QA

XNLI

Crosslingual QA

Crosslingual Tasks

Translation

Reading Comprehension

Multi choice QA

Boolean QA

Simplification

Summarization

Function Calling

API calling

Logical

Symbolic

Common Sense

Arithmetic

Turn based

Completion

Task definition

Few-shot

Symbolic
referencePos/Neg example

Step by step
solving

Tool planning
Task

decomposition
Virtual acting

Physical acting
Knowledge base

utilization

Assignment
planning

Self-cirtisim
Self-refinement

https://arxiv.org/abs/2402.06196

Generative AI Applications
Art Generation: GAN, VAE and stable diffusion models can create artworks such as paintings and music.

Text Generation: LLMs can generate text such as stories, poetry, and dialogues.

Image Editing: Tools like StyleGAN can be used for photo editing and realistic image synthesis.

Content Creation: Generative AI can assist in content creation for various media, including video
games, movies, and advertising, by generating characters, scenes, and scenarios.

Drug Discovery: generate novel molecular structures with desired properties, potentially speeding up
drug discovery processes.

Design Assistance: AI can assist designers by generating design suggestions for products, architecture,
etc., based on specified criteria and constraints.

Simulation and Prediction: Generative models can simulate real-world scenarios and predict
outcomes, useful in fields like climate science, economics, and epidemiology.

Data Augmentation: create synthetic data to augment existing datasets for training ML models.

4

Outline
• Part I: Fundamentals

• Language Models
• N-grams
• Feedforward Neural Network (FFNN) Language Models

• Part II: RNNs and Attentions
• Recurrent Neural Networks (RNNs / LSTMs / GRUs)
• Sequence-to-Sequence learning
• Attentions

• Part III: Transformer and LLMs
• The Transformer Architecture
• Language Models Built on Transformer
• LLM Training Paradigms
• LLM Evaluation

5

Part I: Fundamentals
• Language Models

• N-grams

• Feedforward Neural Network (FFNN) Language Models
6

What is a Language Model (LM)?
l A model of computing either of the following is called a Language Model:

l the probability of a sequence of words:

 𝑝(An	NLP	summer	school	happens	in	Athens)=? ?

 𝑝 𝑊 = 𝑝(𝑤!, 𝑤",…, 𝑤#)

l the probability of the upcoming word:

𝑝(Athens	|	An	NLP	summer	school	happens	in)=? ?

𝑝 𝑤$ 𝑤!, 𝑤",…, 𝑤$%!)
7

Language Model
l How to estimate the probability 𝑝 𝑊 = 𝑝(𝑤!, 𝑤",…, 𝑤#)?

l We can rely on the Chain Rule of Probability

𝑝 𝑊 = 𝑝 𝑤! 𝑝 𝑤" 𝑤! 𝑝 𝑤$ 𝑤!, 𝑤" …

= 𝑝 𝑤! (
%&"

#

𝑝(𝑤%|𝑤!, … , 𝑤%'!)

8

Computing 𝑝(𝑊) using the chain rule
𝑝(An	NLP	summer	school	happens	in	Athens)=

𝑝 An ×
𝑝 NLP	|	An ×
𝑝 summer	|	An	NLP ×
𝑝 school	|	An	NLP	summer ×
𝑝 happens	|	An	NLP	summer	school ×
𝑝 in	|	An	NLP	summer	school	happens ×
𝑝 Athens	|	An	NLP	summer	school	happens	in ×

	

9

l Based on the number of occurrences?

𝑝 Athens	|	An	NLP	summer	school	happens	in =

count(An	NLP	summer	school	happens	in	Athens)
count(An	NLP	summer	school	happens	in)

l Problem: there are so many different sequences, we won’t observe
enough instances in our data!

How do we compute probabilities?

10

l Approximate the probability by simplifying it:

l 1st order Markov assumption
𝑝 Athens	|	An	NLP	summer	school	happens	in ≈ 𝑝(Athens	|in)

l 2nd order Markov assumption
𝑝 Athens	|	An	NLP	summer	school	happens	in ≈ 𝑝(Athens	|	happens	in)

l It’s much more likely that we’ll observe “in Athens” or “happens in
Athens” in our training data.

Markov Assumption

11

Markov Assumption
l Which we can generalise as kth-order Markov assumption:

 𝑝 𝑤% 𝑤!, 𝑤", … , 𝑤%'! ≈ 𝑝(𝑤%|𝑤%'(, 𝑤%'()!, … , 𝑤%'!)

 i.e., we will only look at the last k words

12

N-grams

l N-gram: sequence of n words

l e.g. I	want	to	go	to	the	cinema
l 2-grams (bigrams): I	want,	want	to,	to	go,	go	to,	to	the,…

l 3-grams (trigrams): I	want	to,	want	to	go,	to	go	to,…

l 4-grams: I	want	to	go,	want	to	go	to,	to	go	to	the,…

l ...

13

• Let’s say we have the following sentences to learn our language models:

 see	what	I	found

	 you	found	a	penny

	 it	has	been	found

	 the	book	you	found

	 you	came	yesterday

 What is the probability of the bigram “you	found”?

Computing n-gram Probabilities

14

𝑃(𝑦𝑜𝑢, 𝑓𝑜𝑢𝑛𝑑) 	 = 	𝑃(𝑓𝑜𝑢𝑛𝑑	|	𝑦𝑜𝑢)

With the 1st-order Markov assumption:

• Let’s say we have the following sentences to learn our language models:

 see	what	I	found
	 you	found	a	penny
	 it	has	been	found
	 the	book	you	found
	 you	came	yesterday

 What is the probability of the bigram “you	found”?

 With the 1st-order Markov assumption:

Computing n-gram Probabilities

15

𝑃(𝑦𝑜𝑢, 𝑓𝑜𝑢𝑛𝑑) 	 = 	𝑃(𝑓𝑜𝑢𝑛𝑑	|	𝑦𝑜𝑢) =
count 𝑦𝑜𝑢	𝑓𝑜𝑢𝑛𝑑

count 𝑦𝑜𝑢
=
2
3

Language Models
l We can go with unigram, bigrams, trigrams, 4-grams,…

l Unigram LM: 𝑝(𝑤!, 𝑤",…, 𝑤#) = ∑$%!# 𝑝(𝑤$)

l Bigram LM: 𝑝(𝑤!, 𝑤",…, 𝑤#)= 𝑝 𝑤! ∑$%"# 𝑝 𝑤$ 𝑤$&!

l trigram LM: 𝑝(𝑤!, 𝑤",…, 𝑤#) = 𝑝 𝑤! 𝑝 𝑤" 𝑤! ∑$%'# 𝑝(𝑤$|𝑤$&", 𝑤$&!)

l Note: the longer the length:

l The more detailed our language model
 i.e. long sequences will capture more grammar than short sequences

l But the more sparse our counts
 i.e. many observations only seen once

16

The Intuition of Smoothing
• We have sparse statistics:

 P(w | “found a”)
 3 → penny
 2 → solution
 1 → tenner
 1 → book
 7 → Total count

• We’d like to improve the distribution:
 P(w | “found a”)
 3 → penny → 2.5
 2 → solution → 1.5
 1 → tenner → 0.5
 1 → book → 0.5
 Other → 2
 7 → Total count

17

p
en
n
y

so
lu
ti
o
n

te
n
n
er

fiv
er

b
o
o
k

ca
rd

...

al
le
g
at
io
n
s

fiv
er

ca
rd

...

p
en
n
y

so
lu
ti
o
n

te
n
n
er

b
o
o
k

Smoothing
• Relocate probability mass to make generalisation better

• Laplace smoothing (add-one smoothing)
• Pretend we saw each word one more time than we actually did.
• Just add one to all counts, and adjust normalization

• MLE estimate:

• Add-one estimate:

18

PMLE (wi |wi−1) =
c(wi−1,wi)
c(wi−1)

PAdd−1(wi |wi−1) =
c(wi−1,wi)+1
c(wi−1)+V

Evaluation of a Language Model

l We want to evaluate whether our language model is good.

l i.e. does our language model prefer good sentences to bad ones?

l i.e. does it assign higher probability:

l to “real” or “frequent” sentences (e.g. I want to)

l than “ungrammatical” or “rarely observed” sentences? (e.g. want I to)

19

Evaluation of a Language Model
l Evaluation:

l Is our language model good in giving high probabilities to sentences in our
corpus?

l Usually done in a comparative way:
l Train language model 1 (LM1) from corpus 1.

l Train language model 2 (LM2) from corpus 2.
l For sentences in corpus 3, which of LM1 and LM2 is giving me higher

probabilities?

l We need an evaluation metric to determine which of LM1 or LM2 is best.

20

Evaluation Approaches
l Two different evaluation approaches:

l Extrinsic or in-vivo evaluation
 i.e. Test LMs in some NLP task (sentiment analysis, machine translation, spell
corrector, etc.).

l Intrinsic or in-vitro evaluation
 i.e. evaluate LMs directly – how good can the model assign probabilities to
real unseen data?

21

Intrinsic Evaluation: Perplexity

• Perplexity:

Given a language model, on average:
How difficult is it to predict the next word?

e.g. I always order pizza with cheese and ____ → ???

22

Intrinsic Evaluation: Perplexity
l The Shannon Game:

l How well can we predict the next word?

 pizza	with	cheese	and	____

l A better model: the one that gives higher probability to the actual next word.

l If the actual sentence is “pizza with cheese and biscuits”, my model is quite bad.

l If the actual sentence is “pizza with cheese and mushrooms”, my model is better.

mushrooms	0.1

pepperoni	0.1

jalapeños	0.01

….

biscuits	0.000001

23

Intrinsic Evaluation: Perplexity
• The best LM is the one that is the best at predicting the test set à will give

test sentences the highest probability.

• Perplexity is the inverse probability of the test set, normalised by the number
of words.

• Given a set of test sentences 𝐷 with a total of 𝑁 words:

𝑃𝑃 𝐷 = 𝑝 𝑤!, 𝑤", … , 𝑤&
%!& =

(1
𝑝(𝑤!, 𝑤", … , 𝑤&)

• Lower perplexity is better.

24

Perplexity as a Branching Factor
• Under a uniform distribution, perplexity will be the vocabulary size.

• Suppose we have sentences consisting of random digits [0-9], 𝑉 = 10
• What is the perplexity of the data for a model that assigns the same

probability to each digit?

• Perplexity is the weighted average branching factor of a language.

• i.e., the number of possible next word that can follow any word.

25

𝑃𝑃 𝐷 = 𝑝 𝑤!, 𝑤", … , 𝑤&
%!& =

1
10

& %!&
=

1
10

%!
= 10

Limitations of N-gram Language Models
• Fixed context window

• Only looks at the last 𝑛– 1	words → ignores longer dependencies.
• E.g., “The book that I borrowed from the library … was fascinating”

• A bigram/trigram model struggles to connect “book … was”.

• Smoothing is imperfect
• Fixes zero probabilities but often underestimates rare yet valid sequences.

• Not semantically aware
• Counts surface forms, not meaning.
• E.g., “He eats a cake” ≠ “A cake is eaten by him”.

26

Neural Language Models (LMs)

27

Language Modeling: Calculating
probability of the next word in a
sequence given previous context.

Traditional approach: N-gram based LMs

Modern approach: Neural LMs (outperform n-grams)

State of the art: Transformer-based models

Key insight: Even simple feed-forward LMs can perform surprisingly well.

Simple Feedforward Neural Language Models
l Previously, we compute 𝑝 𝑊 = 𝑝(𝑤!, 𝑤",…, 𝑤#)

l using the Chain Rule of Probability

𝑝 𝑊 = 𝑝 𝑤! (
%&"

#

𝑝(𝑤%|𝑤!, … , 𝑤%'!)

• and make Markov assumption to limit the history
𝑝 𝑤% 𝑤!, 𝑤", … , 𝑤%'! ≈ 𝑝(𝑤%|𝑤%'(, 𝑤%'()!, … , 𝑤%'!)

• Task: predict next word 𝑤% given prior words 𝑤%'!, 𝑤%'", 𝑤%'$, …
• Solution: using neural networks for probability estimation

28

Simple Feedforward Neural Language Models

29

𝑤$%'	 𝑤$%(𝑤$%"	 𝑤$%!	…

Feedforward
Neural Network

Softmax

𝑤$ 	

History context

Output word 𝑝(𝑤$|𝑤$%' , 𝑤$%')!, … , 𝑤$%!; 𝜽)

Simple Feedforward Neural Language Models
• Problem: We are dealing with sequences of arbitrary length.
• Solution: Sliding windows (of fixed length)

30

𝑝 𝑤$ 𝑤!$%! ≈ 𝑝(𝑤$|𝑤$%'
$%!)

A Fixed-window Neural Language Model

31Credit: https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf

Bengio et al., 2003. A neural probabilistic language model. Journal of machine learning research, 3(Feb), pp.1137-1155.

https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf
https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf
https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf
https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf
https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf
https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf
https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf

A Fixed-window Neural Language Model
• Improvements over N-gram LMs:

• No sparsity problem
• No need to store all observed n-grams

• Challenges:
• Context window is too small

• Increasing window size → much larger parameter matrix 𝑊
• Window can never fully capture long-range context

• Inputs at different positions use different weights in 𝑊
• → No symmetry in how inputs are processed

32
Can we have a neural architecture that can process arbitrary length input?

Part II: RNNs and Attentions
• Recurrent Neural Networks (RNNs / LSTMs / GRUs)

• Sequence-to-Sequence learning
• Attentions

33

Recurrent Neural Networks (RNNs)

34

A family of neural networks designed for sequential data.

Handle variable-length input naturally.

Capture word order.

Can model long-range dependencies (especially gated variants like
LSTMs/GRUs).

Do not rely on the Markov assumption when used as language models.

Recurrent Neural Networks (RNNs)

35

𝑥*

ℎ*

𝑦*

𝑊++

𝑊,+

𝑊+-

𝑥! 𝑥" 𝑥(

ℎ! ℎ" ℎ(

𝑦! 𝑦" 𝑦(

𝑊++

𝑊,+ 𝑊,+

𝑊++

𝑊,+

𝑊+- 𝑊+- 𝑊+-

…

…

… 𝑥.

ℎ.

𝑦.

𝑊,+

𝑊+-

ℎ/
𝑊++

Recurrent Neural Networks (RNNs)

We can process a sequence of vectors x by applying a
recurrence formula at every time step:

some function
with parameters W

Input vector at
some time step

Old stateNew state

36

𝑥)

ℎ)

𝑦)

𝑊**

𝑊+*

𝑊*,

Recurrent Neural Networks (RNNs)

We can process a sequence of vectors x by
applying a recurrence formula at every time
step:

The same function and the same set of parameters are used at every time step.

37

𝑥)&" 𝑥)&! 𝑥) 𝑥)-!

ℎ)&" ℎ)&! ℎ) ℎ)-!

𝑦)&" 𝑦)&! 𝑦) 𝑦)-!

𝑊**

𝑊+*

𝑊** 𝑊**

𝑊+* 𝑊+*

𝑊*, 𝑊*, 𝑊*, 𝑊*,

……

…

…

…

…

𝑊+*

(Simple) Recurrent Neural Network

• The state consists of a single
“hidden” vector h

• Re-use the same weight matrix
at every time-step

38

𝑥6'" 𝑥6'! 𝑥6 𝑥6)!

ℎ6'" ℎ6'! ℎ6 ℎ6)!

𝑦6'" 𝑦6'! 𝑦6 𝑦6)!

𝑊++

𝑊,+ 𝑊,+

𝑊++ 𝑊++

𝑊,+ 𝑊,+

𝑊+- 𝑊+- 𝑊+- 𝑊+-

……

…

…

…

…

ℎ6 = tanh(𝑊77ℎ6'! +𝑊87𝑥6)

𝑦6 = 𝑊79ℎ6

RNN: Computational Graph: Many to Many

39

𝐿! 𝐿" 𝐿(𝐿.

𝐿

𝑥! 𝑥" 𝑥(

ℎ! ℎ" ℎ(

𝑦! 𝑦" 𝑦(

𝑊++

𝑊,+ 𝑊,+

𝑊++

𝑊,+

𝑊+- 𝑊+- 𝑊+-

…

…

… 𝑥.

ℎ.

𝑦.

𝑊,+

𝑊+-

ℎ/
𝑊++

RNN Computational Graph: Many to One

40

𝑥! 𝑥" 𝑥(

ℎ! ℎ" ℎ(
𝑊++

𝑊,+ 𝑊,+

𝑊++

𝑊,+

𝑥0

ℎ0

𝑦

𝑊,+

𝑊+-

ℎ/
𝑊++

The food is delicious!

PositiveE.g. sentiment classification

𝑊++

RNN Computational Graph: One to Many

41

𝑥

ℎ! ℎ" ℎ(

𝑦! 𝑦" 𝑦(

𝑊++

𝑊,+

𝑊++

𝑊+- 𝑊+- 𝑊+-

ℎ0

𝑦0

𝑊+-

ℎ/
𝑊++

E.g. image captioning

<START> a dog <END>

𝑊++

Sequence to Sequence: many-to-one + one-to-many
Many to one: Encode input
sequence in a single vector

One to many: Produce output
sequence from single input vector

42

𝑥! 𝑥" 𝑥(

ℎ! ℎ" ℎ(
𝑊++

𝑊,+ 𝑊,+

𝑊++

𝑊,+

ℎ/
𝑊++

How are you

ℎ! ℎ" ℎ(

𝑦! 𝑦" 𝑦(

𝑊++ 𝑊++

𝑊+- 𝑊+- 𝑊+-

𝑊++

你 好 吗

Simple RNN: Elman Network & Jordan Network

• Elman Network – a three-layer network with the addition of a set of "context units”
which connects to the hidden layer fixed with a weight of one

• Jordan network – the context units are fed from the output layer instead of the
hidden layer.

43

Elman Network Jordan Network

𝑥)&! 𝑥) 𝑥)-!

ℎ)&! ℎ) ℎ)-!

𝑦)&! 𝑦) 𝑦)-!

𝑊+*

𝑊** 𝑊**

𝑊+* 𝑊+*

𝑊*, 𝑊*, 𝑊*,

……

…

…

…

… 𝑥)&! 𝑥) 𝑥)-!

ℎ)&! ℎ) ℎ)-!

𝑦)&! 𝑦) 𝑦)-!

𝑊+*

𝑊,* 𝑊,*

𝑊+* 𝑊+*

𝑊*, 𝑊*, 𝑊*,

……

…

…

…

…

𝑐)&!

𝑐)

𝑐)-!

context
unit

Bidirectional RNN

44

𝑥)&! 𝑥) 𝑥)-!

ℎ)&! ℎ) ℎ)-!

𝑊+*

𝑊** 𝑊**

𝑊+* 𝑊+*

……

……

𝑥)&! 𝑥) 𝑥)-!
……

ℎ′)&! ℎ′) ℎ′)-!
𝑉** 𝑉** ……

𝑉+* 𝑉+* 𝑉+*

𝑦)&! 𝑦) 𝑦)-!

Unfortunately ……
• RNN-based network is not always easy to learn

Real experiments on language modeling

Lucky

sometimes

To
ta

l
Lo

ss

Epoch 45
(Adapter from Hung-yi Lee’s slide)

Vanilla RNN Gradient Flow - =>!
=?"#

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013 46

𝑥6'" 𝑥6'! 𝑥6 𝑥6)!

ℎ6'" ℎ6'! ℎ6 ℎ6)!

D𝑦6'" D𝑦6'! D𝑦6 D𝑦6)!

𝑊++

𝑊,+ 𝑊,+

𝑊++ 𝑊++

𝑊,+ 𝑊,+

𝑊+- 𝑊+- 𝑊+- 𝑊+-

……

…

…

…

…

𝐸6'" 𝐸6'! 𝐸6 𝐸6)!

ℎ* = tanh(𝑊++ℎ*%! +𝑊,+𝑥*)

U𝑦* = softmax(𝑊+-ℎ*)

𝜕𝐸*
𝜕𝑊+-

=
𝜕𝐸*
𝜕 U𝑦*

𝜕 U𝑦*
𝜕𝑊+-

= U𝑦* − 𝑦* ℎ*.

𝐸 𝑦, A𝑦 =B
)

𝐸) 𝑦) , A𝑦) = −B
)

B
ℂ

𝑦) log A𝑦)

For individual cost term

Vanilla RNN Gradient Flow - [\!
[]""

47

𝑥6'" 𝑥6'! 𝑥6 𝑥6)!

ℎ6'" ℎ6'! ℎ6 ℎ6)!

D𝑦6'" D𝑦6'! D𝑦6 D𝑦6)!

𝑊++

𝑊,+ 𝑊,+

𝑊++ 𝑊++

𝑊,+ 𝑊,+

𝑊+- 𝑊+- 𝑊+- 𝑊+-

……

…

…

…

…

𝐸6'" 𝐸6'! 𝐸6 𝐸6)!

=
𝜕𝐸*
𝜕 U𝑦*

𝜕 U𝑦*
𝜕ℎ*

^
'1!

*
𝜕ℎ*
𝜕ℎ'

𝜕ℎ'
𝜕𝑊++

ℎ* = tanh(𝑊++ℎ*%! +𝑊,+𝑥*)

U𝑦* = softmax(𝑊+-ℎ*)

𝐸 𝑦, A𝑦 =B
)

𝐸) 𝑦) , A𝑦) = −B
)

B
ℂ

𝑦) log A𝑦)

𝜕𝐸*
𝜕𝑊++

=
𝜕𝐸*
𝜕 U𝑦*

𝜕 U𝑦*
𝜕ℎ*

𝜕ℎ*
𝜕𝑊++

Vanilla RNN Gradient Flow

48

𝜕𝐸*
𝜕𝑊++

=
𝜕𝐸*
𝜕 U𝑦*

𝜕 U𝑦*
𝜕ℎ*

^
'1!

*
𝜕ℎ*
𝜕ℎ'

𝜕ℎ'
𝜕𝑊++

𝜕ℎ*
𝜕ℎ'

= _
$1')!

*
𝜕ℎ$
𝜕ℎ$%!

ℎ6 = tanh(𝑊77ℎ6'! +𝑊87𝑥6)

= _
$1')!

*

𝑊++
2 diag(tanh3 𝑊++ℎ$%! +𝑊,+𝑥*)

Backpropagation from ℎ𝑡	 to ℎ𝑘 multiplies by 𝑊++
. many times

when performing 4+/
4500

 , we need to sum over all intermediate latent nodes, i.e.

=7!
=7'

=7'
=?""

+ =7!
=7(

=7(
=?""

+…+ =7!
=7!)'

=7!)'
=?""

Rewrite 4+/
4+1

	to fill in the gap with chain rule:

Vanilla RNN Gradient Flow

49

Computing gradient
of ℎ* involves many
factors of 𝑊++
(and repeated tanh)

𝑊++
. 	small:

Vanishing gradients

Gradient clipping: Scale
gradient if its norm is too big

𝜕𝐸*
𝜕𝑊++

=
𝜕𝐸*
𝜕 U𝑦*

𝜕 U𝑦*
𝜕ℎ*

^
'1!

*
𝜕ℎ*
𝜕ℎ'

𝜕ℎ'
𝜕𝑊++

𝜕ℎ*
𝜕ℎ'

= _
$1')!

*

𝑊++
2 diag(tanh3 𝑊++ℎ$%! +𝑊,+𝑥*)

Change RNN architecture

𝑊++
. large:

Exploding gradients

Long Short Term Memory (LSTM) [Hochreiter et al., 1997]

i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell
g: Gate gate (?), How much to write to cell

ht−1 ℎ𝑡

𝑐𝑡ct−1

Input
gate

Forget
gate

Output
gate

Gate
gate

50
This and related figures from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Step-by-Step LSTM Walk Through
• Step 1: what information we’re going to throw away from the cell state.

• Forget gate – outputs a number between 0 and 1
• 1: “completely keep this”
• 0: “completely get rid of this.”

51

Step-by-Step LSTM Walk Through…
• Step 2: what new information we’re going to store in the cell state.

• Step 2.1: input gate – whether to write to cell.
 Gate gate – how much to write to cell

52

Step-by-Step LSTM Walk Through…
• Step 2: what new information we’re going to store in the cell state.

• Step 2.1: input gate – whether to write to cell.
 Gate gate – how much to write to cell

• Step 2.2: Combine these two to create an update to the cell.

53

Step-by-Step LSTM Walk Through…
• Step 3: what to output based on the cell state

• Step 3.1: output gate – decides what parts of the cell state to output.
• Step 3.2: apply tanh to cell state (to push the values to be in [-1, 1]), then scale

by the output gate to release only the chosen parts.

54

Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Vanilla RNN LSTM

55

LSTM

56

ht−1 ℎ𝑡

𝑐𝑡ct−1

Input
gate

Forget
gate

Output
gate

Gate
gate

ct-1 only elementwise
multiplication by f, no matrix
multiply by W

LSTM

57

ht−1 ℎ𝑡

𝑐𝑡ct−1

ℎbcd

𝑐bcd

Uninterrupted gradient flow!

LSTM Variant - Gated Recurrent Unit (GRU)
• Combines the forget and input gates into a single “update gate”
• Merges the cell state and hidden state

Update gate

Reset gate

Cho et al., Learning phrase representations using RNN encoder-decoder for statistical machine translation, arXiv:1406.1078, 2014.
58

Update
gate

Reset
gate

Candidate
state

Interim Summary
• RNN is good at dealing with sequence input and/or output.

• Vanilla RNNs – suffer from gradient vanishing/explosion problem.
• Exploding is controlled with gradient clipping.
• Vanishing is controlled with additive interactions (LSTM or GRU).

• Next topics to cover:
• Sequence-to-sequence learning
• Attention mechanism

59

Sequence-to-Sequence (seq2seq) Learning
• Seq2seq learning typically involves two Recurrent Neural Networks

(RNNs).
• The first RNN is an encoder which encodes the input sequence, and

the second RNN is a decoder which generates the output sequence.

60

Chatbot

How are you?

The poor don’t have
any money

I am fine.

Machine Translation

les pauvres sont
démunis

E
nc

od
er

 R
N

N
Neural Machine Translation (NMT) – seq2seq Model

61

Source sentence (input)

les pauvres sont démunis

Target sentence (output)
D

ecoder R
N

N

Encoder RNN produces
an encoding of the
source sentence.

Encoding of the source sentence. Provides
initial hidden state for Decoder RNN.

Decoder RNN is a Language Model that generates
target sentence conditioned on encoding.

ar
gm
a

x ar
gm
a

x

the poor

ar
gm
a

x

don’t have any money <END>

<START> the poor don’t have any money

ar
gm
a

x ar
gm
a

x ar
gm
a

x ar
gm
a

x

This and related figures were adapted from the slides of Abigail See and Richard Socher.

Training a Neural Machine Translation system

Seq2seq is optimised as
a single system.
Backpropagation
operates “end to end”.

62

Sequence-to-sequence: the bottleneck problem
E

nc
od

er
 R

N
N

Source sentence (input)

<START> the poor don’t have any moneyles pauvres sont
démunis

the poor don’t have any money <END>

D
ecoder R

N
N

Problems with this architecture?

Target sequence (output)

Encoding of the
source

sentence

This needs to capture all information
about the source sentence.

Information bottleneck!

63

Attention
• Attention provides a solution to the bottleneck problem.

• Core idea: on each step of the decoder, focus on a particular part of
the source sequence

64

Sequence-to-sequence with attention
E

nc
od

er

R
N

N

<START>les pauvres sont démunis

D
ecoder R

N
N

A
tte

nt
io

n

sc
or

es

dot product

Source sentence (input) 65

Sequence-to-sequence with attention
E

nc
od

er

R
N

N

<START>les pauvres sont démunis

D
ecoder R

N
N

A
tte

nt
io

n

sc
or

es

dot product

Source sentence (input) 66

Sequence-to-sequence with attention
E

nc
od

er

R
N

N

<START>les pauvres sont démunis

D
ecoder R

N
N

A
tte

nt
io

n

sc
or

es

dot product

Source sentence (input) 67

Sequence-to-sequence with attention
E

nc
od

er

R
N

N

<START>les pauvres sont démunis

D
ecoder R

N
N

A
tte

nt
io

n

sc
or

es

dot product

Source sentence (input) 68

Sequence-to-sequence with attention
E

nc
od

er

R
N

N

<START>les pauvres sont démunis

D
ecoder R

N
N

A
tte

nt
io

n

sc
or

es
A

tte
nt

io
n

di

st
rib

ut
io

n

On this decoder timestep, we’re
mostly focusing on the first
encoder hidden state (”les”)

Take softmax to turn the scores
into a probability distribution

Source sentence (input) 69

Sequence-to-sequence with attention
E

nc
od

er

R
N

N

<START>les pauvres sont démunis

D
ecoder R

N
N

A
tte

nt
io

n

di
st

rib
ut

io
n

A
tte

nt
io

n

sc
or

es
Attention

output
Use the attention distribution to take a
weighted sum of the encoder hidden
states.

The attention output mostly
contains information the hidden
states that received high attention.

Source sentence (input) 70

Sequence-to-sequence with attention
E

nc
od

er

R
N

N

<START>les pauvres sont démunis

D
ecoder R

N
N

A
tte

nt
io

n

di
st

rib
ut

io
n

A
tte

nt
io

n

sc
or

es
Attention
output

Concatenate attention output
with decoder hidden state, then
use to compute as before

the

Source sentence (input)

U𝑦1
U𝑦1

71

Sequence-to-sequence with attention
E

nc
od

er

R
N

N

les pauvres sont démunis

D
ecoder R

N
N

A
tte

nt
io

n

sc
or

es

<START> the

A
tte

nt
io

n

di
st

rib
ut

io
n

Attention
output

poor

Source sentence (input)

U𝑦2

72

Sequence-to-sequence with attention
E

nc
od

er

R
N

N

les pauvres sont démunis

D
ecoder R

N
N

A
tte

nt
io

n

sc
or

es
A

tte
nt

io
n

di

st
rib

ut
io

n
Attention
output

<START> the poor

don’t

Source sentence (input)

U𝑦3

73

Sequence-to-sequence with attention
E

nc
od

er

R
N

N

les pauvres sont démunis

D
ecoder R

N
N

A
tte

nt
io

n

sc
or

es
A

tte
nt

io
n

di

st
rib

ut
io

n
Attention
output

<START> the poor don’t

have

Source sentence (input)

U𝑦4

74

Sequence-to-sequence with attention
E

nc
od

er

R
N

N

les pauvres sont démunis

D
ecoder R

N
N

A
tte

nt
io

n

sc
or

es
A

tte
nt

io
n

di

st
rib

ut
io

n
Attention
output

<START> the poor have

any

don’t

Source sentence (input)

U𝑦5

75

Sequence-to-sequence with attention
E

nc
od

er

R
N

N

les pauvres sont démunis

D
ecoder R

N
N

A
tte

nt
io

n

sc
or

es
A

tte
nt

io
n

di

st
rib

ut
io

n
Attention
output

<START> the poor don’t have any

money

Source sentence (input)

U𝑦6

76

Attention: in equations
• Encoder hidden states
• Decoder hidden state at timestep 𝑡:

Step2: Normalise into attention weights 𝛼*

Step3: Compute context (attention output) 𝒂*

77

Step 4: Combine with decoder state

E
nc

od
er

R

N
N

<START>les pauvres sont démunis

A
tte

nt
io

n

di
st

rib
ut

io
n

A
tte

nt
io

n

sc
or

es

Attention
output

the

Source sentence (input)

U𝑦1

𝒉! 𝒉" 𝒉# 𝒉$

𝒆*

𝛼*

𝒂*

𝒔%

Step 1: Compute attention scores 𝒆):

Why Attention Matters in seq2seq Learning
• Enables decoder to focus on the most relevant source words.

• Decoder can directly access source states instead of relying only on a
single vector – solves the bottleneck problem.

• Provides shortcuts to distant source positions – mitigates vanishing
gradients.

• Attention weights show which source words the decoder attends to.
• Implicit alignment emerges naturally — no explicit alignment model needed.

78

General Definition of Attention

• Definition: Given a set of value vectors and a query vector, attention
computes a weighted sum of the values, with weights determined by
the query.

• Intuition:
• Produces a selective summary of the values, guided by the query.
• Provides a fixed-size representation of an arbitrary set of vectors (the values),

conditioned on another vector (the query).

79

• We start with:

• A set of values
• A query

Step 1: Compute attention scores (logits)

Step 2: Apply softmax → attention distribution (attention weights)

Step 3: Take the weighted sum of values → attention output (context vector)

Mechanics of Attention

80

• Basic dot-product attention:
• Note: this assumes 𝑑1 = 𝑑2
• This is the version we saw earlier

• Multiplicative attention:

• Where 𝑾 ∈ ℝ82×83 is a weight matrix

• Additive attention:
• Where 𝑾𝟏 ∈ ℝ84×82 ,𝑾𝟐 ∈ ℝ84×83 	are weight matrices and 𝐯 ∈ ℝ84 is a weight

vector

Attention Variants

81More information: http://ruder.io/deep-learning-nlp-best-practices/index.html#attention

http://ruder.io/deep-learning-nlp-best-practices/index.html
http://ruder.io/deep-learning-nlp-best-practices/index.html
http://ruder.io/deep-learning-nlp-best-practices/index.html
http://ruder.io/deep-learning-nlp-best-practices/index.html
http://ruder.io/deep-learning-nlp-best-practices/index.html
http://ruder.io/deep-learning-nlp-best-practices/index.html
http://ruder.io/deep-learning-nlp-best-practices/index.html
http://ruder.io/deep-learning-nlp-best-practices/index.html
http://ruder.io/deep-learning-nlp-best-practices/index.html

Interim Summary
• Sequence-to-Sequence (seq2seq) architecture

• Two RNNs (encoder-decoder)
• End-to-end training

• Attention mechanism
• Only attend to a small part of the input sequence when generating the output at

each time step

• Attention variants

82

Part III: Transformer and LLMs
• The Transformer Architecture

• Language Models Built on Transformer
• LLM Training Paradigms
• LLM Evaluation 83

84

The Transformer
Architecture

Vaswani et al., Attention Is All You Need. NeurIPS 2017.

https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Transformer Overview

https://jalammar.github.io/illustrated-transformer/
85

je suis étudiant

I am a student

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer Overview

86
https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer Basics – Self-Attention Layer
• Step 1: create three vectors (Query 𝑞, Key 𝑘, Value 𝑣) from each of the

encoder’s input vectors 𝑥

87

The Hobbit is a classic.

Key

Value

Query

𝑞 = 	𝑊<𝑥 𝑘 = 	𝑊=𝑥 𝑣 = 	𝑊>𝑥

Where 𝑞 ∈ ℝ5! , 𝑘 ∈ ℝ5! , 𝑣 ∈ ℝ5"

Transformer Basics – Self-Attention Layer

88

The Hobbit is a classic.

Key

Value

Query

• Step 2: generate output based on the dot-product
attention

Inputs: a query q and a set of key-value (k-v) pairs in other
word positions

Output: weighted sum of values, where weight of each
value is computed by an inner product of the query
and the corresponding key

If we have multiple queries 𝑞, we stack them in a matrix 𝑄

𝐴 𝑄, 𝐾, 𝑉 = softmax 𝑄𝐾& 𝑉

𝐴 𝑞, 𝐾, 𝑉 = ^
$

𝑒LM'!

∑N 𝑒
LM'6

𝑣$

Scaled Dot-Product Attention
• Problem: As 𝑑𝑘 (dimension of 𝑞 and 𝑘) increases, the variance of 𝑞T𝑘 increases. This

causes

• some values inside the softmax become large, leading to the softmax becoming very peaked,

• hence its gradient becomes smaller.

• Solution: Scale by length of query/key vectors:

𝐴 𝑄, 𝐾, 𝑉 = softmax(<=
7

81
)𝑉

89

Self-attention and Multi-head attention
• Problem: Only one way for words to interact with others

• Solution: Multi-head attention
• First map 𝑄,𝐾, 𝑉	 into ℎ many lower-dimensional spaces via 𝑊

matrices;

• Then apply attention, then concatenate outputs and pipe
through linear layer.

90

Attention visualisation: Implicit anaphora resolution

91

The encoder self-attention distribution for the word “it” from the 5th to the 6th layer of a
Transformer trained on English to French translation (one of eight attention heads).
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Transformer Basics – Self-Attention Layer

92

The Hobbit is a classic.

Self-Attention Layer

Transformer Basics – Self-Attention Layer

93

The Hobbit is a classic.

Self-Attention Layer

Self-Attention Layer

Self-Attention Layer

Encoder Input
• Actual word representations are byte-pair encodings

• Also added is a positional encoding so same words at different locations have
different overall representations:

94https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Encoder Input…
• Byte-pair encoding

• A simple form of data compression in which the most common pair of consecutive bytes of
data is replaced with a byte that does not occur within that data.

• E.g., to encode the data “aaabdaaabac”
• The byte pair "aa" occurs most often
• We replace it by a byte that is not used in the data, say, "Z".
• Now the data become: “ZabdZabac” where Z=aa

• Positional encoding

• where pos is the position and 𝑖 is the dimension, 𝑑#$%&' is the dimension of the word
embedding.

95

Complete the Transformer Block

96

• Each block has two “sublayers”
• Multi-head attention

• 2-layer feed-forward neural network (with Relu)

• Each of these two steps also has:
• Residual (short-circuit) connection

https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Complete the Transformer Block

97

• Each block has two “sublayers”
• Multi-head attention

• 2-layer feed-forward neural
network (with Relu)

• Each of these two steps also has:
• Residual (short-circuit) connection

• LayerNorm: normalizes the inputs
across the features to have mean 0
and variance 1

Ba et al., Layer Normalization. arxiv:1607.06450, 2016.

https://arxiv.org/abs/1607.06450

Complete Encoder
• For encoder, at each block, we use the same Q, K and V from the previous layer

• Blocks are repeated 6 times

98https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer Decoder

• Masked decoder self-attention is only allowed to
attend to earlier positions in the output sequence.
This is done by masking future positions

• Encoder-Decoder Attention, where queries
come from previous decoder layer and keys and
values come from output of encoder

• Blocks repeated 6 times
99

Transformer Decoder

100
https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer Decoder

101
https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Tips and Tricks of the Transformer
• Details in paper:

• Byte-pair encodings
• Checkpoint averaging

• ADAM optimizer with learning rate changes
• Dropout during training at every layer just before adding residual

• Label smoothing
• Auto-regressive decoding with beam search and length penalties

102

Improvement on Transformer –
Rotary Position Embedding (RoPE)

• It multiplies the keys and queries at every attention layer by sinusoidal embeddings.

103
Su et al., RoFormer: Enhanced Transformer with Rotary Position Embedding. arxiv:2104.09864, 2021.

• The rotary encoding rotates different
representation dimensions by 𝜃'.

• For two nearby positions, i.e. small distance 𝑖 − 𝑗,
the rotation 𝑅()* 	will be small.

https://arxiv.org/abs/2104.09864

104

Language Models
Built on Transformer

Modern Language Models
- mostly built on the Transformer architecture

• Encoder-only models (e.g., BERT, RoBERTa, ALBERT)
• Bidirectional attention

• Encoder-decoder models (e.g., T5, BART, Flan-T5)
• Encoder: Bidirectional attention
• Decoder:

1. Cross-attention to the encoder hidden states
2. Unidirectional attention mask for sequence generation

• i.e., each token only attends to the past tokens and itself

• Decoder-only models (e.g., GPT-x models, OPT, BLOOM, Gopher)
• Using the unidirectional attention mask

105

Bidirectional Encoder Representations from Transformers
(BERT)

• BERT = Encoder of Transformer
• Learn from a large text corpus without annotation

Encode
r

(This and related figures from http://jalammar.github.io/illustrated-bert/)
106

http://jalammar.github.io/illustrated-bert/
http://jalammar.github.io/illustrated-bert/
http://jalammar.github.io/illustrated-bert/

BERT Training – Masked Language Model

107

BERT Training – Two-Sentence Task

108

BERT – Extract contextualised word embeddings

109

BERT – Extract contextualised word embeddings

110

Encoder-Decoder Model: T5

111
https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

T5: Text-to-Text Transfer Transformer

112

[Task-specific prefix]: [Input text] [output text] T5

Raffel et al., Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. arxiv:1910.10683, 2019.

https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683

Decoder-only Model: OpenAI’s GPT-x
• Use the decoder layers from the Transformer architecture.
• Training objective: predict the next word using massive (unlabelled) data.

113
Figure source: https://jalammar.github.io/illustrated-gpt2/Brown et al., Language models are few-shot learners. NeurIPS 2020.

https://jalammar.github.io/illustrated-gpt2/
https://jalammar.github.io/illustrated-gpt2/
https://jalammar.github.io/illustrated-gpt2/
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165

Mixture of Experts (MoE) Models
• Mixtral 𝟖×𝟕𝑩 – a Sparse Mixture of Experts language model

• A decoder-only model
• The feedforward block picks from a set of 8 distinct groups of parameters.

• At every layer, for every token, a router network chooses two of these groups
(the “experts”) to process the token and combine their output additively.

• The model only uses a fraction of the total set of parameters per token.

114
Jiang et al., Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024

https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088

115

LLM Training
Paradigms

Learning Task-Specific Models

116

Sentiment
Classification

Book reviews

Information
Extraction

……

ChatGPT is an AI chatbot developed by
OpenAI and released in November 2022.

Product: ChatGPT
Organisation: OpenAI
Date: November 2022

Label: positive

Pre-trained Language Models

117
Sanh, V., et al., 2019. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

Pre-training and then Fine-Tuning

118

(a) Language model pre-training (b) Language model fine-tuning

Large Language Model
(LLM)

Sentiment Analysis

Information Extraction

Summarisation

……

Pre-trained Large Language Models (LLMs)

119
Zhao, W.X., et al., 2023. A survey of large language models. arXiv preprint arXiv:2303.18223.

In-Context Learning
• LLM learns to perform a task during inference by being given examples or

instructions in the input prompt, without parameter update.
• Users provide examples (few-shot) or instructions (zero-shot) in the prompt.

120

Q: What is the capital of France?
A: Paris

Q: What is the capital of Italy?
A: Rome

Q: What is the capital of UK?
A:

LondonLLM

Brown et al., 2020. Language models are few-shot learners. NeurIPS, 33, pp.1877-1901.

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

Instruction Tuning
Fine-tuning pre-trained LLMs on
formatted task instances.
• Model learns to follow instructions

better.
• Improves zero-shot performance on

unseen tasks.

121
Zhang et al. Instruction Tuning for Large Language Models: A Survey. arXiv 2308.10792, 2024.

https://arxiv.org/abs/2308.10792

Alignment Tuning
• Adjusting an LLM's behaviour to better align with human values, intentions, and

preferences (e.g., around helpfulness, honesty, and safety).

• E.g., Reinforcement Learning from Human Feedback (RLHF)
1. Human annotators rank different model responses.
2. A reward model is trained to reflect these preferences.

3. The LLM is then fine-tuned using reinforcement learning (e.g., PPO) to produce more
preferred outputs.

122

Alignment Tuning

123
Ouyang et al. Training language models to follow instructions with human feedback. arXiv 2203.02155, 2022.

https://arxiv.org/abs/2203.02155

124

Parameter-Efficient
Fine-Tuning

Parameter-Efficient Fine-Tuning (PEFT)
• LLMs require a lot of memory storage to store, and many high-end GPUs

to fine-tune
• Llama 70B needs 130GB storage and 4 A100-40G to fine-tune.

• Parameter-efficient fine tuning can make LLMs more accessible.
• Only fine tune a subset of the parameters for each task.
• A 33B model can be fine-tuned on a 24GB consumer GPU in less than 12 hours.

125

Parameter-Efficient Fine-Tuning (PEFT)

• Adapter Tuning
• Add adapter layers in between the transformer layers of a large model.
• During fine-tuning, only tune the adapter layers.

• Prefix Tuning
• Learns a sequence of prefixes that are prepended at each transformer layer.
• Learn an optimal prefix for each task.

• Prompt Tuning
• learns a single prompt representation that is prepended to the embedded input.

126
He et al., Towards a unified view of parameter-efficient transfer learning. ICLR 2022.

Layer #1

Prompt Input

Layer #N

…

(c) Prompt Tuning

Input

AdapterAdapterMHA FFN

AdapterAdapterMHA FFN
…

(a) Adapter Tuning

Layer #1

Prefix

Input

Layer #N

Prefix

…

(b) Prefix Tuning

Layer #1

Input

Layer #N

…

(d) Low-Rank Adapation

Wdown

Wdown

LoRA

Figure from (Zhao et al., 2023)

https://arxiv.org/abs/2110.04366
https://arxiv.org/abs/2110.04366
https://arxiv.org/abs/2110.04366

LoRA: Low-Rank Adaptation

• 𝑊8 ∈ 𝑅5×: is a weight matrix in the pre-trained model,
Δ𝑊 is an adaptor of the same size.

• 𝑊8 is frozen, only Δ𝑊 is updated.

• B ∈ 𝑅5×;and 𝐴 ∈ 𝑅;×:are low rank matrices,
 𝑟 ≪ min(𝑑, 𝑘).

• B is initialised as zero and 𝐴 uses random Gaussian.

ℎ = 𝑊v𝑥 + Δ𝑊𝑥
	 = 	𝑊v𝑥 + BA𝑥

Hu et al., LoRA: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.
127

https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685

LoRA – How to adjust the hyperparameters
• Rank (𝑟)

• Lower 𝑟 → fewer trainable parameters.

• Little statistical difference between 𝑟 = 8 and 256 when
applied to all layers.

• Typical values: 8, 16, 32.

• Scaling (𝛼)

• When adaptors are merged back, original weights are
scaled by 𝛼 / 𝑟.

• Larger 𝛼 → stronger adaptor influence (similar to learning
rate).

• Typical values: 2𝑟, 𝑟, 0.5𝑟, 0.25𝑟.

• Dropout
• Dropout = 0.05 helps smaller models (7B, 13B).

128
Hu et al., LoRA: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.

https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685

PEFT - QLoRA
• LoRA – the full LLM still needs to be loaded

first which consumes lots of memory.

• QLoRA: Efficient Finetuning of Quantised
LLMs.

• Quantisation – techniques for performing
computations and storing tensors at lower bit
width than floating point precision.

Dettmers et al., QLoRA: Efficient finetuning of quantized LLMs. NeurIPS, 36, 2023.
Frantar et al., GPTQ: Accurate post-training quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022. 129

https://proceedings.neurips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323

PEFT - QLoRA
• QLoRA conducts LoRA fine-tuning based on a quantised model

• Two novel techniques are used:
1. 4-bit NormalFloat: Instead of quantising uniformly, it estimates the quantile

of the input tensor through the empirical cumulative distribution function.

2. Double quantisation: The quantisation constants are also quantised.

• The forward and backward passes are performed in 16-bit.

Dettmers et al., QLoRA: Efficient finetuning of quantized LLMs. NeurIPS, 36, 2023.
130

https://proceedings.neurips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html

131

LLM Evaluation

Mathematical Reasoning – AIME 2025

132

Question: There is a collection of 25 indistinguishable
white chips and 25 indistinguishable black
chips. Find the number of ways to place
some of these chips in the 25 unit cells of a
5×5	grid such that:

• each cell contains at most one chip all
chips in the same row; and

• all chips in the same column have the
same colour;

• any additional chip placed on the grid
would violate one or more of the
previous two conditions.

https://www.vellum.ai/llm-leaderboardhttps://huggingface.co/datasets/Maxwell-Jia/AIME_2024

https://www.vellum.ai/llm-leaderboard
https://www.vellum.ai/llm-leaderboard
https://www.vellum.ai/llm-leaderboard
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024

Humanity's Last Exam (HLE)

133
https://agi.safe.ai/ https://www.vellum.ai/llm-leaderboard

https://agi.safe.ai/
https://www.vellum.ai/llm-leaderboard
https://www.vellum.ai/llm-leaderboard
https://www.vellum.ai/llm-leaderboard

ChatbotArena

134
https://lmarena.ai

https://lmarena.ai/?leaderboard

ChatbotArena LLM Leaderboard

135
https://lmarena.ai/?leaderboard

https://lmarena.ai/?leaderboard

ARC-AGI-2 – A Next-Gen Reasoning Benchmark
Evaluate the efficiency and capability of state-
of-the-art AI reasoning systems.

Key Features:
• Multi-step, abstract reasoning tasks
• Real-world inspired challenges

• Minimal reliance on superficial cues

136
https://arcprize.org/

https://arcprize.org/

ARC-AGI Leaderboard

137
https://arcprize.org/

https://arcprize.org/

Foundation of LLM Evaluation

What to evaluate?
Evaluation Tasks

Where to evaluate?
Evaluation Benchmarks

How to evaluation?
Evaluation Process

Chang et al., A survey on evaluation of large language models. ACM Transactions on Intelligent Systems and Technology, 2024.
138

https://dl.acm.org/doi/abs/10.1145/3641289

Evaluation Tasks

• Reading Comprehension, Natural Language Inference (NLI),
Summarization, Coreference Resolution, Sentiment Analysis

• Example Benchmarks: GLUE, SuperGLUE, C-Eval
Language Understanding

• General Knowledge, Subject-Specific Knowledge
• Common-Sense Reasoning, Mathematical Reasoning…
• Fact Verification
• Example Benchmarks: MMLU, BIG-bench, FEVER

Knowledge and Reasoning

• Instruction Following
• Helpfulness, Harmlessness, Honesty (HHH)
• Dialogue Coherence and Engagement
• Example Benchmarks: MT-Bench, Chatbot Arena, AlpacaEval

Dialogue and Interaction

• Toxicity Detection, Bias and Fairness Testing
• Value Alignment
• Adversarial Robustness
• Example Benchmarks: SafetyBench, TRUSTGPT, AdvBench

Safety and Robustness

139

Evaluation Tasks

• Image + Text Reasoning
• Visual Question-Answering
• Chart/Table Reasoning
• Example Benchmarks: MMBench, SEED-Bench, MMMU

Multimodal Understanding

• Theory of Mind (ToM) Reasoning
• Emotion Understanding
• Ethical and Moral Reasoning
• Tool Use (API Calls, Planning)
• Example Benchmarks: ToMi, EmotionBench, API-Bank

Specialised Abilities

• Generalisation to Unseen Data
• Domain Transfer
• Prompt Robustness
• Example Benchmarks: GLUE-X, BOSS, PromptBench

Out-of-Distribution (OOD)
and Robustness

140

Evaluation Benchmarks

General benchmarks

MMLU, C-Eval, OpenLLM,
DynaBench, AlpacaEval, HELM,
Chatbot Arena, MT-Bench, BIG-
bench, PandaLM, BOSS, GLUE-
X, KoLA, AGIEval,
PromptBench,, LLMEval,
GAOKAO-Bench

Specific benchmarks

SOCKET, Choice-75, CUAD,
TRUSTGPT, MATH, APPS,

CELLO, EmotionBench,
CMMLU, API-Bank, M3KE,

UHGEval, ARB, MultiMedQA,
CVALUES, CMB, MINT,

Dialogue CoT, SafetyBench

Multi-modal
benchmarks

MMBench, SEED-Bench,
M3Exam, ToolBench,

MathVista, MM-Vet, LAMM,
LVLM-eHub

141
Chang et al., A survey on evaluation of large language models. ACM Transactions on Intelligent Systems and Technology, 2024.

https://dl.acm.org/doi/abs/10.1145/3641289

General Benchmarks

142

Benchmark Focus Notes

MMLU Multitask knowledge and reasoning Covers 57 subjects, 15,908 MCQs.

BIG-bench Diverse task challenges 200+ tasks, multi-domain.

HELM Holistic performance (accuracy, fairness) Multi-dimensional evaluation.

OpenLLM Public model competitions Leaderboard-style comparisons.

MT-Bench Multi-turn dialogue Becoming a general conversational test.

AGIEval Standardised exam reasoning SAT, GRE, LSAT-style tasks.

AlpacaEval Automated NLP task evaluation Focus on robustness and diversity.

C-Eval Chinese academic exams (52 subjects) Big for multilingual/global benchmarks.

GAOKAO-Bench Advanced reasoning (Gaokao exams) Very difficult knowledge/reasoning test.

PromptBench Prompt engineering evaluation Measures prompt adaptability.

PandaLM Subjective qualities (clarity, formality) Human-like model scoring.

Specific Benchmarks

143

Domain Benchmark Focus Notes

Medical MultiMedQA Medical exam QA Highly specialised in healthcare knowledge.

Law CUAD Legal contract review Extracting and understanding clauses.

Science ChemBench
scientific reasoning and problem-
solving across chemistry subfields.

Evaluate LLMs' ability to understand, reason,
and apply knowledge in chemistry.

Emotion EmotionBench Understanding and recognising
emotions Focused on emotional intelligence in dialogue.

Theory of Mind (ToM) OpenToM Some tasks measure ToM reasoning Designed tasks simulate ToM scenarios.

Knowledge Reasoning KoLA Semantic knowledge inference Deep reasoning based on general knowledge.

Safety SafetyBench Toxicity, bias, adversarial robustness Evaluates safety issues like bias and toxicity.

Robustness DynaBench
Adversarial robustness, closed-loop
systems

Evaluates performance in real-time, adversarial
settings.

Value alignment TRUSTGPT Ethics, bias, and value alignment Evaluates ethical responses and value
consistency.

Multimodal Benchmark

144

Benchmark Focus Modalities Notes

LVLM-eHub Evaluation of large vision-language
models (LVLMs) Text + Vision (Images) Targets the integration of vision and language

understanding.

MMBench Visual QA, image understanding, scene
reasoning, chart/table interpretation.

Text + science diagrams,
infographics, natural scenes

Answering questions based on photos,
diagrams, charts, tables, and screenshots.

ToolBench Multimodal task performance (tools,
reasoning)

Text + Images + Other tools
(APIs)

Evaluates models on using tools and
reasoning with multiple types of input.

VQAv2
(Visual QA) Visual reasoning via question answering Text + Images Tests model performance in answering

questions based on images.

GQA Visual question answering with reasoning Text + Images
Focuses on reasoning through visual contexts,
particularly for logical problem-solving with
images.

M3Exam Multimodal, Multiturn, Multilevel
Examination Benchmark Text + image, tables/graphs Simulates real-world examination scenarios

where multi-step reasoning is needed.

ScienceQA Science reasoning with text, diagrams Text + images, diagrams,
tables

Especially used for science-based multimodal
reasoning.

MathVista Math + visual understanding
Text + diagrams, graphs,
shapes Combination of visual math reasoning.

Evaluation Process
Automatic

evaluation

Human evaluation

Expert assessment rates outputs on dimensions like accuracy, relevance,
and helpfulness.

Crowdsourced Evaluation gathers judgments from multiple non-expert
evaluators.

Comparative Evaluation presents evaluators with multiple model outputs
to rank or choose between.

LLM-as-a-Judge

Single Model Judging uses a strong LLM to evaluate other model outputs.

Multi-Model Consensus employs multiple LLMs as judges and aggregates their
scores.

Constitutional AI Evaluation trains models specifically for evaluation tasks .

145

Accuracy: Exact match, Quasi-exact match, F1 score, ROUGE score
Calibrations: Expected calibration error, Area under the curve
Fairness: Demographic parity difference, Equalised odds difference
Robustness: Attack success rate, Performance drop rate

Evaluation Metrics

1. Accuracy-Based Metrics
• Exact Match (EM): % of answers that exactly match the

ground truth (used in QA like SQuAD, GSM8K).

• Top-k Accuracy: Whether the correct answer appears in
the top k predictions.

• Pass@k: Used in generation tasks – likelihood of
generating a correct solution in k attempts.

2. Text Overlap Metrics
• BLEU / ROUGE / METEOR

• Measure n-gram overlap between model output and
reference texts.

3. Semantic Similarity Metrics
• BERTScore, Natural Language Inference (NLI) score

• Uses contextual embeddings (e.g., via BERT) to
compare semantic similarity between generated and
reference texts.

5. Log-Likelihood / Perplexity
• Measures how well the model predicts tokens in a

dataset.

• Common in pretraining evaluation, less reliable for
downstream task performance.

4. Win Rate (Arena-Style Comparisons)
• Win Rate: % of times a model wins in head-to-head

matchups.

6. Human Evaluation
• Evaluators judge model outputs for:

• Helpfulness

• Honesty

• Factuality

• Reasoning quality

• Harmlessness

• …
146

Close-Ended vs. Open-Ended Evaluation

147

Prompt,
Input Query LLM

Generated
Output

Reference
Answer

Prompt,
Input Query LLM

Generated
Output

• Close-ended evaluation

• Open-ended evaluation

Close-Ended Evaluation

148

Candidate Text: The cat sits on the mat.

Reference Text: The cat is sitting on the mat.

Text Overlap Metrics

(e.g., BLEU, ROUGE, METEOR, etc.)

Semantic Similarity Metrics

(e.g., BERTScore, SentenceBERT, BLUERT)

Close-Ended Evaluation
• Text Overlap Metrics

• Exact Match Accuracy
• Token-Level F1 (Partial token-level overlap between

generated and golden answer)
• BLEU (Bilingual Evaluation Understudy)

• Calculates the precision for each n-gram level, i.e., the
proportion of n-grams in the candidate text that appears
in the reference texts.

• ROUGE (Recall-Oriented Understudy for Gisting
Evaluation)

• Focuses on recall-based evaluation by comparing n-
grams, word sequences, and word pairs.

• ROUGE-N (n-gram overlap), ROUGE-L (longest common
subsequence).

• METEOR (Metric for Evaluation of Translation with
Explicit ORdering)
• Handles synonyms and word-order variations to improve upon

BLEU’s limitations.

149

Candidate Text: The cat sits on the mat.

Reference Text: The cat is sitting on the mat.

Exact Match: 0
Token-F1: Precision: 5/6, Recall: 5/7, F1: 0.77
BLEU: 0.42 (precision-focused, considering n-gram

overlap)
ROUGE-1: 0.77 (recall-focused, unigram overlap)
ROUGE-L: 0.77 (longest common subsequence)
METEOR: 0.88 (accounts for precision, recall,

synonyms, and word order)

Problem: Ignore semantic similarity between the reference and candidate text.

Close-Ended Evaluation
• Semantic Similarity Metrics

• BERTScore
• Compares token embeddings from a pretrained model like BERT; matches each token in

the generated text to the most similar token in the reference.

• SentenceBERT
• Encodes full sentences and measures cosine similarity between them.

• BLUERT
• Trains a model to predict human evaluation scores based on embeddings; fine-tuned

specifically for quality evaluation.

150

Open-Ended Evaluation
• No single correct answer
• Multiple plausible outputs can exist
• Focus on evaluating fluency, coherence, relevance, factuality, etc.
• Human judgment often needed

• Costly, sometimes inconsistent

• LLM-as-a-judge
• Fast and scalable; Can follow complex evaluation rubrics; Correlates well with human judgment in

many cases.
• Vulnerable if the judging prompt is poorly designed; May reflect training data biases

151

Example Tasks Description

Story Writing Write a short story about space travel

Summarisation Summarise a news article

Dialogue Response Continue a conversation naturally

Code Generation Solve a programming task with multiple valid solutions

Single Model Judging – LLM-EVAL
• Single LLMs generate score for different evaluation dimensions (LLM-EVAL)

152

Observations:
• Different scoring ranges, e.g., 0-5, and 0-100

o Similar performance, overall better than other baselines.

• Different LLMs matter
o Claude and ChatGPT generally achieve better performance

across all dimensions when compared to GPT-3.5.

• Different decoding strategies
o Greedy decoding generally achieves better performance

across all evaluation dimensions.

Lin and Chen. LLM-EVAL: Unified Multi-Dimensional Automatic Evaluation for Open-Domain Conversations with Large Language Models. NLP4ConvAI 2023

https://arxiv.org/abs/2305.13711
https://arxiv.org/abs/2305.13711
https://arxiv.org/abs/2305.13711
https://arxiv.org/abs/2305.13711
https://arxiv.org/abs/2305.13711
https://arxiv.org/abs/2305.13711
https://arxiv.org/abs/2305.13711

Multi-Model Consensus – ChatEval

153
Chan et al., ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate. ICLR 2024.

https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu

Multi-Model Consensus – ChatEval

a) The debater agents take turns in a set order to generate their response.

b) The debater agents are prompted to asynchronously generate responses.
c) Additionally employ another LLM as a summarizer and concatenate this

summarization into all debater agents’ chat history slots.

154
Chan et al., ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate. ICLR 2024.

https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu

Constitutional AI Evaluation – Prometheus
• Problems of using proprietary LLMs as an evaluation tool:

• A lack of transparency

• Uncontrolled versioning
• Prohibitive costs

• PROMETHEUS
• a 13B LM that aims to induce fine-grained evaluation capability of GPT-4, while being open-

source, reproducible, and inexpensive.

155
Kim et al., Prometheus: Inducing Fine-Grained Evaluation Capability in Language Models. ICLR 2024.

https://openreview.net/forum?id=8euJaTveKw
https://openreview.net/forum?id=8euJaTveKw
https://openreview.net/forum?id=8euJaTveKw

Prometheus
• An open-source LM evaluator trained on a dataset containing feedback collections.

156
Kim et al., Prometheus: Inducing Fine-Grained Evaluation Capability in Language Models. ICLR 2024.

https://openreview.net/forum?id=8euJaTveKw
https://openreview.net/forum?id=8euJaTveKw
https://openreview.net/forum?id=8euJaTveKw

Goodhart's Law

• When systems are evaluated based on a specific metric, they often start optimising for that metric directly.
• As a result, the metric no longer accurately reflects what it was originally intended to measure.

• AI model evaluations: If a language model is optimised to win
leaderboard rankings, it may overfit to benchmark tasks rather than
improve general reasoning.

157

“When a measure becomes a target, it ceases to be a good measure.”

Put Evaluation into Practice

158

Choose an
appropriate
benchmark for a
given LLM task or
domain, justifying the
choice against
alternatives.

1
Design a small-scale
evaluation
experiment – select
prompts, sampling
strategy, and rating
protocol that align
with study goals.

2
Compute and
interpret key metrics
(e.g., BERTScore,
Win-rate, Pass@k)
and articulate their
limitations.

3
Critically assess
evaluation results –
spot statistical noise,
annotation bias, or
benchmark leakage
that may invalidate
conclusions.

4

Interim Summary
• The Transformer architecture

• Transformer basics – self-attention layer, encoder input, complete encoder,
Transformer decoder

• Improvement on Transformer – Rotary Position Embedding (RoPE)

• Language models built on Transformer
• Encoder-only models – BERT
• Encoder-decoder models – T5

• Decoder-only models – GPT-x
• Mixture of Experts models – Mixtral 8x7B

159

Interim Summary
• LLM training paradigms

• Learning task-specific models
• Pre-training and then fine-tuning
• In-context learning
• Instruction tuning
• Alignment tuning

• Parameter-efficient fine-tuning
• Adapter tuning, Prefix tuning, Prompt Tuning, LoRA, QLoRA

• LLM evaluation
• What to evaluate? Evaluation Tasks
• Where to evaluate? Evaluation Benchmarks
• How to evaluation? Evaluation Process

160

161

https://kclnlp.github.io/

Email: yulan.he@kcl.ac.uk

Twitter: @yulanhe

https://kclnlp.github.io/
mailto:yulan.he@kcl.ac.uk

