
Classification

Ryan McDonald1

AthNLP

September, 2025

1Thanks to Andre Martins and Barbara Plank for use of materials.
Ryan McDonald Classification AthNLP 2025 1 / 119

Classifiers

How does sodium bicarbonate work ?

NOUN or VERB

Set my alarm tomorrow for 10am -> Alarm

Quickest way to Boston -> Navigation

Why is there summer and winter -> Answer seeking

Ryan McDonald Classification AthNLP 2025 2 / 119

Warning!

• Focus: machine learning fundamentals
• Specific to language as input modality
• Not specific applications

• If you miss a detail, don’t worry

• Important to get broad concepts

Ryan McDonald Classification AthNLP 2025 3 / 119

Linear Classifiers

This lecture is 1/2 about linear classifiers!

Why? It’s 2025 and everybody uses neural networks.

• The underlying machine learning concepts are the same

• The theory (statistics and optimization) are much better understood

• Linear classifiers are a component of neural networks.

Ryan McDonald Classification AthNLP 2025 4 / 119

Linear Classifiers and Neural Networks

Ryan McDonald Classification AthNLP 2025 5 / 119

Linear Classifiers and Neural Networks

Linear Classifier

Ryan McDonald Classification AthNLP 2025 5 / 119

Linear Classifiers and Neural Networks

Linear Classifier

Handcrafted
Features

Ryan McDonald Classification AthNLP 2025 5 / 119

Linear Classifiers and Generative AI

• Transformers: 99% of LLMs/GenAI

• ChatGPT; GPT
• Claude
• Gemini
• Llama
• DeepSeek
• xAI/Grok

• Last layer = linear classifier

• Last layer predicts next word/token

• I.e., last layer is a classifier!

• Also: Many other linear layers!

Ryan McDonald Classification AthNLP 2025 6 / 119

Binary Classification: Spam Detection

Task: Identify if an incoming email/SMS/DM/etc. is spam or not.

This is a binary classification problem.

Ryan McDonald Classification AthNLP 2025 7 / 119

Multiclass Classification: Topic Labeling

Task: given a news article, determine its topic (politics, sports, etc.)

This is a multi-class classification problem.

Ryan McDonald Classification AthNLP 2025 8 / 119

Let’s Start Simple

• Example 1 – sequence: ⋆ ⋄ ◦; label: −1
• Example 2 – sequence: ⋆ ♡ △; label: −1
• Example 3 – sequence: ⋆ △ ♠; label: +1

• Example 4 – sequence: ⋄ △ ◦; label: +1

• New sequence: ⋆ ⋄ ◦; label ?
• New sequence: ⋆ ⋄ ♡; label
• New sequence: ⋆ △ ◦; label ?

Why can we do this?

Ryan McDonald Classification AthNLP 2025 9 / 119

Let’s Start Simple

• Example 1 – sequence: ⋆ ⋄ ◦; label: −1
• Example 2 – sequence: ⋆ ♡ △; label: −1
• Example 3 – sequence: ⋆ △ ♠; label: +1

• Example 4 – sequence: ⋄ △ ◦; label: +1

• New sequence: ⋆ ⋄ ◦; label ?

• New sequence: ⋆ ⋄ ♡; label
• New sequence: ⋆ △ ◦; label ?

Why can we do this?

Ryan McDonald Classification AthNLP 2025 9 / 119

Let’s Start Simple

• Example 1 – sequence: ⋆ ⋄ ◦; label: −1
• Example 2 – sequence: ⋆ ♡ △; label: −1
• Example 3 – sequence: ⋆ △ ♠; label: +1

• Example 4 – sequence: ⋄ △ ◦; label: +1

• New sequence: ⋆ ⋄ ◦; label −1
• New sequence: ⋆ ⋄ ♡; label ?

• New sequence: ⋆ △ ◦; label ?

Why can we do this?

Ryan McDonald Classification AthNLP 2025 9 / 119

Let’s Start Simple

• Example 1 – sequence: ⋆ ⋄ ◦; label: −1
• Example 2 – sequence: ⋆ ♡ △; label: −1
• Example 3 – sequence: ⋆ △ ♠; label: +1

• Example 4 – sequence: ⋄ △ ◦; label: +1

• New sequence: ⋆ ⋄ ◦; label −1
• New sequence: ⋆ ⋄ ♡; label −1
• New sequence: ⋆ △ ◦; label ?

Why can we do this?

Ryan McDonald Classification AthNLP 2025 9 / 119

Let’s Start Simple

• Example 1 – sequence: ⋆ ⋄ ◦; label: −1
• Example 2 – sequence: ⋆ ♡ △; label: −1
• Example 3 – sequence: ⋆ △ ♠; label: +1

• Example 4 – sequence: ⋄ △ ◦; label: +1

• New sequence: ⋆ ⋄ ◦; label −1
• New sequence: ⋆ ⋄ ♡; label −1
• New sequence: ⋆ △ ◦; label ?

Why can we do this?

Ryan McDonald Classification AthNLP 2025 9 / 119

Let’s Start Simple: Machine Learning

• Example 1 – sequence: ⋆ ⋄ ◦; label: −1
• Example 2 – sequence: ⋆ ♡ △; label: −1
• Example 3 – sequence: ⋆ △ ♠; label: +1

• Example 4 – sequence: ⋄ △ ◦; label: +1

• New sequence: ⋆ ⋄ ♡; label −1

Label −1 Label +1

P(−1|⋆) = count(⋆ and −1)
count(⋆) = 2

3
= 0.67 vs. P(+1|⋆) = count(⋆ and +1)

count(⋆) = 1
3
= 0.33

P(−1|⋄) = count(⋄ and −1)
count(⋄) = 1

2
= 0.5 vs. P(+1|⋄) = count(⋄ and +1)

count(⋄) = 1
2
= 0.5

P(−1|♡) = count(♡ and −1)
count(♡)

= 1
1
= 1.0 vs. P(+1|♡) = count(♡ and +1)

count(♡)
= 0

1
= 0.0

Ryan McDonald Classification AthNLP 2025 10 / 119

Let’s Start Simple: Machine Learning

• Example 1 – sequence: ⋆ ⋄ ◦; label: −1
• Example 2 – sequence: ⋆ ♡ △; label: −1
• Example 3 – sequence: ⋆ △ ♠; label: +1

• Example 4 – sequence: ⋄ △ ◦; label: +1

• New sequence: ⋆ △ ◦; label ?

Label −1 Label +1

P(−1|⋆) = count(⋆ and −1)
count(⋆) = 2

3
= 0.67 vs. P(+1|⋆) = count(⋆ and +1)

count(⋆) = 1
3
= 0.33

P(−1|△) = count(△ and −1)
count(△)

= 1
3
= 0.33 vs. P(+1|△) = count(△ and +1)

count(△)
= 2

3
= 0.67

P(−1|◦) = count(◦ and −1)
count(◦) = 1

2
= 0.5 vs. P(+1|◦) = count(◦ and +1)

count(◦) = 1
2
= 0.5

Ryan McDonald Classification AthNLP 2025 10 / 119

Machine Learning

1 Define a model/distribution of interest

2 Make some assumptions if needed

3 Fit the model to the data

Ryan McDonald Classification AthNLP 2025 11 / 119

Outline

1 Terminology, notation and feature representations

2 Linear Classifiers

Perceptron

Logistic Regression

3 Regularization

4 Dense Representations

5 Similarity-based Learning

6 Neural Networks

Ryan McDonald Classification AthNLP 2025 12 / 119

Some Notation: Inputs and Outputs

• Input x ∈ X
• e.g., a news article, a sentence, an image, ...

• Output y ∈ Y
• e.g., spam/not spam, a topic, a translation, an image segmentation

• Input/Output pair: (x,y) ∈ X× Y
• e.g., a news article together with a topic
• e.g., a email together with a spam/no spam label
• e.g., an image partitioned into segmentation regions

Ryan McDonald Classification AthNLP 2025 13 / 119

Supervised Machine Learning

• We are given a labeled dataset of input/output pairs:

D = {(xt ,yt)}|X|t=1 ⊆ X× Y

• Goal: use it to learn a classifier h : X→ Y that generalizes well to
arbitrary inputs.

• At test time, given xt ∈ X, we predict

y′ = h(xt).

• Hopefully, y′ ≈ yt most of the time.

Ryan McDonald Classification AthNLP 2025 14 / 119

Things can go by different names depending on what Y is...

Ryan McDonald Classification AthNLP 2025 15 / 119

Regression

Deals with continuous output variables:

• Regression: Y = R
• e.g., given a news article, how much time a user will spend reading it?

• Multivariate regression: Y = RK , where K > 1
• e.g., predict the X-Y coordinates in an image where the user will click

Ryan McDonald Classification AthNLP 2025 16 / 119

Classification

Deals with discrete output variables:

• Binary classification: Y = {±1}
• e.g., spam detection, positive/negative sentiment

• Multi-class classification: Y = {1, 2, . . . ,K}
• e.g., topic classification, positive/negative/neutral sentiment

• Structured classification: Y exponentially large and structured
• e.g., machine translation, caption generation, image segmentation

What about GenerativeAI?

Ryan McDonald Classification AthNLP 2025 17 / 119

Our Setup

Let’s assume a multi-class classification problem, with |Y| labels (classes).

Ryan McDonald Classification AthNLP 2025 18 / 119

Feature Representations

Feature engineering is an important step in linear classifiers:

• Bag-of-words features for text, also lemmas, parts-of-speech, ...

• Embeddings (e.g., word2vec)

• SIFT features and wavelet representations in computer vision

• External database, APIs and knowledge resources

Ryan McDonald Classification AthNLP 2025 19 / 119

Feature Representations

We need to represent information about x

Typical approach: define a feature map ϕ : X→ RD

• ϕ(x) is a high dimensional feature vector

We can use feature vectors to encapsulate Boolean, categorical, and
continuous features

• To start, we will focus on sparse binary features

• Categorical features can be reduced to a range of one-hot binary
values

• We look at continuous (dense) features later

Ryan McDonald Classification AthNLP 2025 20 / 119

Examples

• x is a document and y is a topic

ϕj(x) =

{
1 if x contains the word “interest”
0 otherwise

ϕj(x) = % of words in x with punctuation

• x is a word and y is a part-of-speech tag

ϕj(x) =

{
1 if x ends in “ed”
0 otherwise

Ryan McDonald Classification AthNLP 2025 21 / 119

Bag of Words Feature Representation

• x is a name

ϕ0(x) =

{
1 if x contains “George”
0 otherwise

ϕ1(x) =

{
1 if x contains “Washington”
0 otherwise

ϕ2(x) =

{
1 if x contains “Bridge”
0 otherwise

ϕ3(x) =

{
1 if x contains “General”
0 otherwise

ϕ4(x) =

{
1 if x contains an unknown word
0 otherwise

• x=General George Washington → ϕ(x) = [1 1 0 1 0]

• x=George Washington Bridge → ϕ(x) = [1 1 1 0 0]

• x=George Washington University → ϕ(x) = [1 1 0 0 1]

• x=George George George of the Jungle → ϕ(x) = [1 0 0 0 1]

Ryan McDonald Classification AthNLP 2025 22 / 119

Feature Engineering and NLP Pipelines

Classical NLP pipelines consist of stacking together several linear classifiers

Each classifier’s predictions are used to handcraft features for other
classifiers

Example: Part-of-speech → Named Entities → Topic Classification

• Part-of-speech: nouns, determiners for Typed Named Entities
• E.g., Google noun vs. Google verb

• Typed Named Entities: Categories for topic classification
• E.g., Which George Washington? Person, University/Organization,

Bridge/Location?

Ryan McDonald Classification AthNLP 2025 23 / 119

Outline

1 Terminology, notation and feature representations

2 Linear Classifiers

Perceptron

Logistic Regression

3 Regularization

4 Dense Representations

5 Similarity-based Learning

6 Neural Networks

Ryan McDonald Classification AthNLP 2025 24 / 119

Linear Classifiers – Weights/Parameters

• Parametrized by a weight vector w ∈ RD (one weight per feature)

• E.g., D = 5, w = [0.3, 1.2,−5.4, 3.8,−0.09]

• ϕ(x) and w are vectors of same length – D

• We actually need |Y| weight vectors wy ∈ RD

• i.e., one weight vector per output label y

Ryan McDonald Classification AthNLP 2025 25 / 119

Linear Classifiers – Weights/Parameters

• ! Important Concept !

• wy is weight/parameter vector for output label y

• Let W = [w1, . . . ,w|Y|]

• W is a concatenation of all wy

• Example
• w1 = [1, 1], w2 = [2, 2], w3 = [3, 3] for |Y| = 3
• Then W = [1, 1, 2, 2, 3, 3]

Ryan McDonald Classification AthNLP 2025 26 / 119

Linear Classifiers – Predictions

• The score2 of a particular label is based on a linear combination of
features and their weights, e.g., for each y ∈ Y

score(y,x) = wy · ϕ(x) =
∑
i

wi ,y · ϕi (x)

• At test time, predict the class y′ which maximizes this score:

y′ = argmax
y∈Y

score(y,x)

• At training time, different strategies to learn wy’s yield different
linear classifiers: perceptron, logistic regression, SVMs, ...

2Called logit in NNs.
Ryan McDonald Classification AthNLP 2025 27 / 119

Linear Classifiers – Example

• D = 5, Y = {Person (per), Location (loc)}

• wper = [0.3, 1.2,−5.4, 3.8,−0.09]

• wloc = [−0.6, 2.4, 4.0,−2.1, 0.1]

• x =George Washington Bridge → ϕ(x) = [1, 1, 1, 0, 0]

y′ = arg max
y∈{loc,per}

score(y,x)

= arg max
y∈{loc,per}

wy · ϕ(x)

= arg max
y∈{loc,per}

{ [−0.6, 2.4, 4.0,−2.1, 0.1]loc · [1, 1, 1, 0, 0],

[0.3, 1.2,−5.4, 3.8,−0.09]per · [1, 1, 1, 0, 0] }
= arg max

y∈{loc,per}
{5.8loc,−3.9per}

= loc

Ryan McDonald Classification AthNLP 2025 28 / 119

Linear Classifiers – Bias Terms

• Often linear classifiers are presented as

score(y,x) = wy · ϕ(x) + by

where by is a bias or offset term

• This can be folded into ϕ(x) via a constant feature

• I.e., ϕ(x) = [ϕ(x), 1] and wy = [wy, by]

• For now, we assume this for simplicity

Ryan McDonald Classification AthNLP 2025 29 / 119

Commonly Used Notation in Neural Networks

Linear Classifier

Handcrafted
Features

y′ = argmax
(
Wϕ(x)⊤ + b

)
, W =


...

wy
...

 , b =


...
by
...

 .

Ryan McDonald Classification AthNLP 2025 30 / 119

Binary Linear Classifier

With binary labels (Y = {±1}) we often use a minimal parametrization:

y′ = arg max
y∈{±1}

wy · ϕ(x) + by

=

{
+1 if w+1 · ϕ(x) + b+1 > w−1 · ϕ(x) + b−1

−1 otherwise

=

{
+1 if (w+1 −w−1) · ϕ(x) + (b+1 − b−1) > 0
−1 otherwise

= sign((w+1 −w−1)︸ ︷︷ ︸
v

·ϕ(x) + (b+1 − b−1)︸ ︷︷ ︸
c

).

That is: only half of the parameters are needed.

Ryan McDonald Classification AthNLP 2025 31 / 119

Binary Linear Classifier

With binary labels (Y = {±1}) we often use a minimal parametrization:

y′ = arg max
y∈{±1}

wy · ϕ(x) + by

=

{
+1 if w+1 · ϕ(x) + b+1 > w−1 · ϕ(x) + b−1

−1 otherwise

=

{
+1 if (w+1 −w−1) · ϕ(x) + (b+1 − b−1) > 0
−1 otherwise

= sign((w+1 −w−1)︸ ︷︷ ︸
v

·ϕ(x) + (b+1 − b−1)︸ ︷︷ ︸
c

).

That is: only half of the parameters are needed.

Ryan McDonald Classification AthNLP 2025 31 / 119

Binary Linear Classifier

With binary labels (Y = {±1}) we often use a minimal parametrization:

y′ = arg max
y∈{±1}

wy · ϕ(x) + by

=

{
+1 if w+1 · ϕ(x) + b+1 > w−1 · ϕ(x) + b−1

−1 otherwise

=

{
+1 if (w+1 −w−1) · ϕ(x) + (b+1 − b−1) > 0
−1 otherwise

= sign((w+1 −w−1)︸ ︷︷ ︸
v

·ϕ(x) + (b+1 − b−1)︸ ︷︷ ︸
c

).

That is: only half of the parameters are needed.

Ryan McDonald Classification AthNLP 2025 31 / 119

Binary Linear Classifier

With binary labels (Y = {±1}) we often use a minimal parametrization:

y′ = arg max
y∈{±1}

wy · ϕ(x) + by

=

{
+1 if w+1 · ϕ(x) + b+1 > w−1 · ϕ(x) + b−1

−1 otherwise

=

{
+1 if (w+1 −w−1) · ϕ(x) + (b+1 − b−1) > 0
−1 otherwise

= sign((w+1 −w−1)︸ ︷︷ ︸
v

·ϕ(x) + (b+1 − b−1)︸ ︷︷ ︸
c

).

That is: only half of the parameters are needed.

Ryan McDonald Classification AthNLP 2025 31 / 119

Binary Linear Classifier

Then (v , c) is an hyperplane that divides all points:

1 2-2 -1

1

2

-2

-1

Points along line
have scores of 0

Ryan McDonald Classification AthNLP 2025 32 / 119

Multiclass Linear Classifier

Defines regions of space.

Ryan McDonald Classification AthNLP 2025 33 / 119

Linear Separability

• A set of points is linearly separable if there exists a w/W such that
classification is perfect

Separable Not Separable

Ryan McDonald Classification AthNLP 2025 34 / 119

Learning

• Machine Learning = finding weights/parameters W/w

• Using data! Specifically D = {xt ,yt}t=1

• There are many algorithms for doing this

Ryan McDonald Classification AthNLP 2025 35 / 119

Outline

1 Terminology, notation and feature representations

2 Linear Classifiers

Perceptron

Logistic Regression

3 Regularization

4 Dense Representations

5 Similarity-based Learning

6 Neural Networks

Ryan McDonald Classification AthNLP 2025 36 / 119

Perceptron (Rosenblatt, 1958)

(Extracted from Wikipedia)

• Invented in 1957 at the
Cornell Aeronautical
Laboratory by Frank
Rosenblatt

• Implemented in custom-built
hardware as the “Mark 1
perceptron,” designed for
image recognition

• 400 photocells, randomly
connected to the “neurons.”
Weights were encoded in
potentiometers

• Weight updates during
learning were performed by
electric motors.

Ryan McDonald Classification AthNLP 2025 37 / 119

Perceptron in the News...

Ryan McDonald Classification AthNLP 2025 38 / 119

Perceptron Algorithm

• Online algorithm: process one data point at each round
• Take xt ; apply the current model to make a prediction for it

y′ = argmax
y∈Y

score(y,xt)

• If prediction is correct, proceed

• Else, correct model: add feature vector w.r.t. correct output &
subtract feature vector w.r.t. predicted (wrong) output

wyt = wyt + ϕ(xt)

wy′ = wy′ − ϕ(xt)

Ryan McDonald Classification AthNLP 2025 39 / 119

Perceptron Algorithm

input: labeled data D

initialize W = 0, i.e., wy = 0, ∀y
repeat

observe example (xt ,yt) ∈ D

predict y′ = argmaxy∈Y score(y,xt)
if y′ ̸= yt then

update wyt = wyt + ϕ(xt)
update wy′ = wy′ − ϕ(xt)

end if
until stopping criterion3

output: model weights W

3E.g., max iterations; zero/ϵ errors
Ryan McDonald Classification AthNLP 2025 40 / 119

Perceptron’s Mistake Bound

A couple definitions:

• the training data is linearly separable with margin γ > 0 iff there are
weight vectors uy with ∥uy∥ = 1 such that

uyt · ϕ(xt) ≥ uy′ · ϕ(xt) + γ, ∀i , ∀y′ ̸= yt .

• radius of the data: R = maxt ∥ϕ(xt)∥.

Then we have the following bound of the number of mistakes:

Theorem (Novikoff (1962))

The perceptron algorithm is guaranteed to find a separating hyperplane
after at most 2R2

γ2 mistakes.

Proof: https://proceedings.mlr.press/v97/beygelzimer19a/beygelzimer19a-supp.pdf

Ryan McDonald Classification AthNLP 2025 41 / 119

Perceptron’s Mistake Bound

A couple definitions:

• the training data is linearly separable with margin γ > 0 iff there are
weight vectors uy with ∥uy∥ = 1 such that

uyt · ϕ(xt) ≥ uy′ · ϕ(xt) + γ, ∀i , ∀y′ ̸= yt .

• radius of the data: R = maxt ∥ϕ(xt)∥.

Then we have the following bound of the number of mistakes:

Theorem (Novikoff (1962))

The perceptron algorithm is guaranteed to find a separating hyperplane
after at most 2R2

γ2 mistakes.

Proof: https://proceedings.mlr.press/v97/beygelzimer19a/beygelzimer19a-supp.pdf

Ryan McDonald Classification AthNLP 2025 41 / 119

What a Simple Perceptron Can and Can’t Do

• Remember: the decision boundary is linear (linear classifier)

• It can solve linearly separable problems (OR, AND)

Ryan McDonald Classification AthNLP 2025 42 / 119

What a Simple Perceptron Can and Can’t Do

• ... but it can’t solve non-linearly separable problems such as simple
XOR (unless input is transformed into a better representation):

XOR(x1, x2) = XOR(AND(x1, x2),AND(x1, x2))

• Result attributed to Minsky and Papert (1969) but was known before.

Ryan McDonald Classification AthNLP 2025 43 / 119

Outline

1 Terminology, notation and feature representations

2 Linear Classifiers

Perceptron

Logistic Regression

3 Regularization

4 Dense Representations

5 Similarity-based Learning

6 Neural Networks

Ryan McDonald Classification AthNLP 2025 44 / 119

Logistic Regression

Define a conditional probability:

P(y|x) = exp(score(y,x))

Zx
, Zx =

∑
y′∈Y

exp(score(y′,x))

Probability distribution:
∑

y P(y|x) = 1 and P(y|x) ≥ 0, ∀y

Exponentiating and normalizing score = softmax transformation4

Note: still a linear classifier

argmax
y

P(y|x) = argmax
y

exp(score(y,x))

Zx

= argmax
y

exp(wy · ϕ(x))

Zx

= argmax
y

exp(wy · ϕ(x))

= argmax
y

wy · ϕ(x)

4More later during neural networks!
Ryan McDonald Classification AthNLP 2025 45 / 119

Logistic Regression

PW(y|x) = exp(score(y,x))

Zx
=

exp(wy · ϕ(x))
Zx

• Let W = [w1, . . . ,w|Y|] be a vector concatenating all weights wy

How do we learn W?

• Set W to minimize the negative conditional log-likelihood:

W = argmin
W
− log

(∏
t=1

PW(yt |xt)

)
= argmin

W
−
∑
t=1

logPW(yt |xt)

= argmin
W

∑
t=1

log
∑
y′

exp(wy′ · ϕ(xt)) − wyt · ϕ(xt)

 ,

i.e., assign as much probability mass as possible to the correct labels!

Ryan McDonald Classification AthNLP 2025 46 / 119

Logistic Regression

• This objective function is convex

• Therefore any local minimum is a global minimum

• No closed form solution, but lots of numerical techniques
• Gradient methods (gradient descent, conjugate gradient)
• Quasi-Newton methods (L-BFGS, ...)

Ryan McDonald Classification AthNLP 2025 47 / 119

Recap: Convex functions

Pro: Guarantee of a global minima ✓

Figure: Illustration of a convex function. The line segment between any two
points on the graph lies entirely above the curve.

Ryan McDonald Classification AthNLP 2025 48 / 119

Recap: Gradients

A gradient of a function f (W) wrt parameters W = [w1, . . . ,wP] is:

∇Wf (W) =

[
∂

∂w1
f , . . . ,

∂

∂wP
f

]
I.e., the vector of partial derivatives of f , which is the derivative of f wrt
to each variable wi

The gradient gives the direction and fastest rate of increase of f at point
W

When a gradient is zero we are at a stationary point of f . For convex
functions that means global minima.

Ryan McDonald Classification AthNLP 2025 49 / 119

Recap: Iterative Descent Methods

Goal: find the minimum/minimizer of f : Rd → R

• Proceed in small steps in the optimal direction till a stopping
criterion is met (usually norm of gradient is small)

• Gradient descent (GD) updates: w ← w − η∇f (w)

• η is the step size / learning rate

Figure: Illustration of gradient descent. The red lines correspond to steps taken
in the negative gradient direction.

Ryan McDonald Classification AthNLP 2025 50 / 119

Logistic Regression: Gradient Descent (GD)

• Let L(W; (x,y)) =
(
log
∑

y′ exp(w′
y · ϕ(x))−wy · ϕ(x)

)
• Call this our loss function for instance x,y

• We want to minimize over D = {(xt ,yt)}t=1 with GD
• I.e., Find argminW

∑
t=1 L(W; (xt ,yt))

• Logistic-regressions loss function often called log-loss or cross-entropy

• GD update will look like

W = W− η∇W (
∑

t=1 L(W; (xt ,yt)))

= W− η
∑

t=1∇WL(W; (xt ,yt))

• Need to calculate ∇WL(W; (x,y)): gradient of L w.r.t. W

• This is a batch optimization: updates are over whole dataset

Ryan McDonald Classification AthNLP 2025 51 / 119

Stochastic Gradient Descent (SGD)

SGD is like perceptron – update every instance:

• Pick (xt ,yt) randomly

• Update W = W− η∇WL(W; (xt ,yt))

• i.e. we approximate the true gradient with a noisy, unbiased, gradient,
based on a single sample

• Variants exist in-between (mini-batches)

• GD and SGD guaranteed to find the optimal W (for suitable step
sizes)

Ryan McDonald Classification AthNLP 2025 52 / 119

Logistic Regression: Simple SGD Algorithm

input: labeled data D, step size η

initialize: W = 0, i.e., wy = 0, ∀y

repeat
observe example (xt ,yt) ∈ D

Update W = W− η∇WL(W; (xt ,yt))

until stopping criterion

output: model weights W

• Picking step sizes example of hyperparameter tuning

• Stopping criterion usually gradient is small: ∥∇WL(W; (xt ,yt))∥ < ϵ, ∀t
• Small (or zero) gradient is stationary point – global minimum

Ryan McDonald Classification AthNLP 2025 53 / 119

Computing the Gradient: ∇WL(W; (x,y))

• We need ∇WL(W; (x,y)), where

L(W; (x,y)) = log
∑
y′

exp(wy′ · ϕ(x))−wy · ϕ(x)

W = [w1, . . . ,wy′ , . . . ,wy, . . . ,w|Y|]

Some reminders:

1 ∇w log F (w) = 1
F (w)∇wF (w)

2 ∇w expF (w) = exp(F (w))∇wF (w)

Ryan McDonald Classification AthNLP 2025 54 / 119

Computing the Gradient

∇WL(W; (x,y)) = ∇W

log
∑
y′

exp(wy′ · ϕ(x))−wy · ϕ(x)


= ∇W log

∑
y′

exp(wy′ · ϕ(x))−∇Wwy · ϕ(x)

=
1∑

y′ exp(wy′ · ϕ(x))
∑
y′

∇W exp(wy′ · ϕ(x))−∇Wwy · ϕ(x)

=
1

Zx

∑
y′

exp(wy′ · ϕ(x))∇Wwy′ · ϕ(x)−∇Wwy · ϕ(x)

=
∑
y′

exp(wy′ · ϕ(x))
Zx

∇Wwy′ · ϕ(x)−∇Wwy · ϕ(x)

=
∑
y′

PW(y′|x)∇Wwy′ · ϕ(x)−∇Wwy · ϕ(x).

Ryan McDonald Classification AthNLP 2025 55 / 119

Computing the Gradient

∇WL(W; (x,y)) =
∑

y′ PW(y′|x)∇Wwy′ · ϕ(x)−∇Wwy · ϕ(x)

Let’s look at the partial derivative wrt to a variable i : ∂
∂wi

L(W; (x,y))

Remember that W = [w1, . . . ,wy′ , . . . ,wy, . . . ,w|Y|]

Cases:

1 i indexes a weight wi in W that is in wy∑
y′

PW(y′|x) ∂

∂wi
wy′ · ϕ(x) − ∂

∂wi
wy · ϕ(x) = PW(y|x)ϕi (x)−ϕi (x)

2 i indexes a weight wi in W that is in wy′ where y′ ̸= y∑
y′

PW(y′|x) ∂

∂wi
wy′ · ϕ(x) − ∂

∂wi
wy · ϕ(x) = PW(y′|x)ϕi (x)

Ryan McDonald Classification AthNLP 2025 56 / 119

What does the update look like?

Combine all ∂
∂wi

into vector updates for each wy

Cases:

1 For true output y

wy = wy − η (PW(y|x)ϕ(x)−ϕ(x))

2 For y′ ̸= y
wy′ = wy′ − η

(
PW(y′|x)ϕ(x)

)

Ryan McDonald Classification AthNLP 2025 57 / 119

SGD for Logistic Regression

input: labeled data D, step size η

initialize: W = 0, i.e., wy = 0, ∀y

repeat
observe example (xt ,yt) ∈ D

wyt = wyt − η (PW(yt |x)ϕ(x)−ϕ(x))
wy′ = wy′ − η (PW(y′|x)ϕ(x)) for y′ ̸= yt

until stopping criterion

output: model weights W

Ryan McDonald Classification AthNLP 2025 58 / 119

Logistic Regression Summary

• Define conditional probability

PW(y|x) = exp(wy · ϕ(x))
Zx

• Set weights to minimize negative conditional log-likelihood:

W = argminW
∑
t

− logPW(yt |xt) = argminw
∑
t

L(W; (xt ,yt))

• Can find the gradient and run gradient descent (or any gradient-based
optimization algorithm)

Ryan McDonald Classification AthNLP 2025 59 / 119

The Story So Far

• Logistic regression is probabilistic: minimizes neg log-likelihood
• also called log-linear model and max-entropy classifier
• no closed form solution
• For training instance (x,y), SDG updates look like

wy = wy + η (ϕ(x)− PW(y|x)ϕ(x))

wy′ = wy′ − η (PW(y′|x)ϕ(x)) for y′ ̸= y

• Perceptron is non-probabilistic; minimizes training errors
• Assumes linearly separable, though works well anyways
• For training instance (x,y), updates look like

wy = wy + ϕ(x)

wy′ = wy′ − ϕ(x) for y′ ̸= y

SGD updates for logistic regression and perceptron look similar!

Ryan McDonald Classification AthNLP 2025 60 / 119

Outline

1 Terminology, notation and feature representations

2 Linear Classifiers

Perceptron

Logistic Regression

3 Regularization

4 Dense Representations

5 Similarity-based Learning

6 Neural Networks

Ryan McDonald Classification AthNLP 2025 61 / 119

Overfitting

If the model is too complex (too many parameters) and the data is scarce,
we run the risk of overfitting:

Ryan McDonald Classification AthNLP 2025 62 / 119

Regularization

In practice, we regularize models to prevent overfitting

argminW
∑
t=1

L(W; (xt ,yt)) + λΩ(W),

where Ω(W) is the regularization function, and λ controls how much to
regularize.

• Gaussian prior (ℓ2), promotes smaller weights:

Ω(W) = ∥W∥22 =
∑
i

W2
i .

• Laplacian prior (ℓ1), promotes sparse weights!

Ω(W) = ∥W∥1 =
∑
i

|Wi |

Ryan McDonald Classification AthNLP 2025 63 / 119

Empirical Risk Minimization

argminW
∑
t=1

L(W; (xt , yt)) + λΩ(W),

• This formulation is generally called Empirical Risk Minimization.

• It consists of a Loss/Risk function that we want to minimize;

• And (optionally) a regularization function that stops us from
overfitting to the data.

• Useful abstraction that covers most modern ML algorithms.

• Linear classifiers: different choices of L and Ω invoke specific models

Ryan McDonald Classification AthNLP 2025 64 / 119

Logistic Regression with ℓ2 Regularization

• Still optimize with GD or SGD

• What is the new gradient?∑
t=1

∇WL(W; (xt ,yt)) +∇WλΩ(w)

=
∑
t=1

∇WL(W; (xt ,yt)) +∇W
λ

2
∥W∥2

• We know ∇WL(W; (xt ,yt))

• Just need ∇W
λ
2 ∥W∥

2 = λW

Ryan McDonald Classification AthNLP 2025 65 / 119

Loss Function

Should match as much as possible the metric we want to optimize at test
time

Should be well-behaved (continuous, maybe smooth) to be amenable to
optimization (this rules out the 0/1 loss)

Some examples:

• Squared loss for regression

• Negative log-likelihood (cross-entropy): multinomial logistic regression

• Hinge loss: support vector machines

• A bunch more ...

Ryan McDonald Classification AthNLP 2025 66 / 119

Linear Classifier

Could not possible cover everything.
Please look at Andre Martins excellent lecture for LXMLS:

• http://lxmls.it.pt/2019/LINEAR_LEARNERS.pdf

• Also covers
• Naive Bayes
• Support Vector Machines (SVMs)
• SVMs v Perceptron v Log Reg
• Non-Linear Classifiers ̸= Neural Networks

• K-Nearest neighbors (we’ll do this)
• Kernel methods (SVMs)

Ryan McDonald Classification AthNLP 2025 67 / 119

Outline

1 Terminology, notation and feature representations

2 Linear Classifiers

Perceptron

Logistic Regression

3 Regularization

4 Dense Representations

5 Similarity-based Learning

6 Neural Networks

Ryan McDonald Classification AthNLP 2025 68 / 119

Recap: Sparse Feature Representations

• x is a name

ϕ0(x) =

{
1 if x contains “George”
0 otherwise

ϕ1(x) =

{
1 if x contains “Washington”
0 otherwise

ϕ2(x) =

{
1 if x contains “Bridge”
0 otherwise

ϕ3(x) =

{
1 if x contains “General”
0 otherwise

ϕ4(x) =

{
1 if x contains an unknown word
0 otherwise

• x=General George Washington → ϕ(x) = [1 1 0 1 0]

• x=George Washington Bridge → ϕ(x) = [1 1 1 0 0]

• x=George Washington University → ϕ(x) = [1 1 0 0 1]

• x=George George George of the Jungle → ϕ(x) = [1 0 0 0 1]

Ryan McDonald Classification AthNLP 2025 69 / 119

Dense Feature Representations

• ϕ(x) ∈ RD

• But ϕ is dense real valued vector, i.e., zero values not frequent

• E.g.,

ϕ(x) = [0.123, 0.439,−0.213, 0.692,−0.002]

• But where does ϕ(x) come from?

• We learn it from data!

• Long history: tf-idf, vector space models, ..., Word2Vec, Glove, ...

Ryan McDonald Classification AthNLP 2025 70 / 119

Embedding / Lookup Table

.

.

.

.

.

.

work

• Input is a word ϕ(x) ∈ RD for all x ∈ V

• V is a fixed vocabulary of words
• We store these in a |V| × D look up table

• These are the model word embeddings
• AKA embedding layer; word look-up table; ...

Ryan McDonald Classification AthNLP 2025 71 / 119

Word2Vec

“You shall know a word by the company it keeps”

brown

The c=-2

Quick c=-1

Fox c=+1

Jumps c=+2

Example from McCormick http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Ryan McDonald Classification AthNLP 2025 72 / 119

Word2Vec

• Corpus C = {X1, . . . ,X|C|}
• With sentences X = x1, . . . , x|X|
• Vocab V = {xi |xi ∈ X and X ∈ C}
• Goal: learn vector/embedding for all xi ∈ V (embedding table)

• word2vec (Mikolov et al. (2013))
• Define vector/embedding per word: ϕ(xi)

5

• word2vec optimizes (SkipGram model):

|C|∑
j

|X||∑
i

∑
−c≤k≤c,k ̸=0

log p(xi+k |xi) =
|C|∑
j

|X||∑
i

∑
−c≤k≤c,k ̸=0

log
eϕ(xi)·ϕ(xi+k)∑
xl∈V eϕ(xi)·ϕ(xl)

Maximize the probability word embedding can predict neighbours in some
context window (of size c)

5Usually two embeddings used: word and word as context. Simplified here.
Ryan McDonald Classification AthNLP 2025 73 / 119

Word2Vec

Re-writing the equation: |C|∑
i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log eϕ(xj)·ϕ(xj+k)

−
 |C|∑

i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log
∑
xl∈V

eϕ(xj)·ϕ(xl)


• On the left: Sum over positive contexts
• On the right: Sum over negative contexts

• Not feasible to sum over entire vocabulary

• Solution: negative sampling |C|∑
i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log eϕ(xj)·ϕ(xj+k)

−
 |C|∑

i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log
∑
xl∈Vs

eϕ(xj)·ϕ(xl)


• Vs is randomly sampled, i.e., Vs ⊂ V and |Vs | << |V| (often 1)

Ryan McDonald Classification AthNLP 2025 74 / 119

Word2Vec

 |C|∑
i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log eϕ(xj)·ϕ(xj+k)

−
 |C|∑

i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log
∑
xl∈Vs

eϕ(xj)·ϕ(xl)



• ϕ(xi) are used as final word embeddings

• Usually optimized with SGD6

6Negate function to make it a loss and minimize.
Ryan McDonald Classification AthNLP 2025 75 / 119

Varibable Length Inputs

• What is input x is not just a single word?

• Or x is not of fixed length, e.g., sentences or documents?

• E.g., x = x1 . . . xn

COMMON SOLUTIONS

• Average: ϕ(x) = 1
|x|
∑

x∈xϕ(x)

• Other pointwise operations, e.g., max, sum, ...

• Truncation+concatentation: ϕ(x) = [ϕ(x1), . . . ,ϕ(xk)] for a fixed k
• Sparse-dense: Whole look-up table is input, but

• Zero out rows of words that are not present
• Usually not practical

Ryan McDonald Classification AthNLP 2025 76 / 119

Outline

1 Terminology, notation and feature representations

2 Linear Classifiers

Perceptron

Logistic Regression

3 Regularization

4 Dense Representations

5 Similarity-based Learning

6 Neural Networks

Ryan McDonald Classification AthNLP 2025 77 / 119

Recap: What a Linear Classifier Can Do

• It can solve linearly separable problems (OR, AND)

Ryan McDonald Classification AthNLP 2025 78 / 119

Recap: What a Linear Classifier Can’t Do

• ... but it can’t solve non-linearly separable problems such as simple
XOR:

Ryan McDonald Classification AthNLP 2025 79 / 119

Summary: Linear Classifiers

We’ve seen

• Perceptron

• Logistic regression

• Others: Support vector machines, LDA, ...

All lead to convex optimization problems ⇒ no issues with local
minima/initialization

All assume the features are well-engineered such that the data is nearly
linearly separable

Ryan McDonald Classification AthNLP 2025 80 / 119

What If Data Are Not Linearly Separable?

Engineer better features (often works!)

Similarity-based / Kernel methods:

• define a similarity / kernel function between points

• use it to classify new instances; need a good function

Neural networks (up next)

• embrace non-convexity and local minima

Ryan McDonald Classification AthNLP 2025 81 / 119

What If Data Are Not Linearly Separable?

Engineer better features (often works!)

Similarity-based / Kernel methods:

• define a similarity / kernel function between points

• use it to classify new instances; need a good function

Neural networks (up next)

• embrace non-convexity and local minima

Ryan McDonald Classification AthNLP 2025 81 / 119

What If Data Are Not Linearly Separable?

Engineer better features (often works!)

Similarity-based / Kernel methods:

• define a similarity / kernel function between points

• use it to classify new instances; need a good function

Neural networks (up next)

• embrace non-convexity and local minima

Ryan McDonald Classification AthNLP 2025 81 / 119

What If Data Are Not Linearly Separable?

Engineer better features (often works!)

Similarity-based / Kernel methods:

• define a similarity / kernel function between points

• use it to classify new instances; need a good function

Neural networks (up next)

• embrace non-convexity and local minima

Ryan McDonald Classification AthNLP 2025 81 / 119

Two Views of Machine Learning

There’s two big ways of building machine learning systems:

1 Feature-based: describe objects’ properties (features) and build
models that manipulate them
• everything that we have seen so far.

2 Similarity-based: don’t describe objects by their properties; rather,
build systems based on comparing objects to each other
• k-th nearest neighbors; kernel methods; Gaussian processes.

Sometimes the two are equivalent!

Ryan McDonald Classification AthNLP 2025 82 / 119

Parametric vs. Non-parametric

Another way to classify machine learning systems:

1 Parametric: Fix the number of parameters, model structure and
hypothesis space
• Goal: find parameters to optimize objective in the hypothesis space

• Everything so far plus NNs

2 Non-parametric: No/little assumptions about form of solution; size of
parameters not fixed
• Goal: find the function/solution to best fit data

• Similarity methods (k-th nearest neighbors); kernel methods; decision
trees, random forests, gaussian processes.

Ryan McDonald Classification AthNLP 2025 83 / 119

(K-th) Nearest Neighbor Classifier

• Memorize (training) data D = {xt ,yt}t=1

• To classify a new datapoint x
• Find the k closest data points in the data (e.g., training set)
• Assign the most frequent class in those k points

Ryan McDonald Classification AthNLP 2025 84 / 119

(K-th) Nearest Neighbor Classifier

• We are not learning any parameters

• Hypothesis space can change by adding more data points

• Power is greater than linear classifier (xor on right)

Ryan McDonald Classification AthNLP 2025 85 / 119

Similarity Functions and Inference

• Common Similarity functions
• Euclidean:

√∑
i (ϕ(x)− ϕ(x′))2

• Inner product: ϕ(x) · ϕ(x′)

• Cosine: ϕ(x)·ϕ(x′)
||ϕ(x)|| ||ϕ(x′)||

• Function can also be learned!

• Searching a K-NN database
• Dense retrieval! Used in RAG, search, etc.

• Brute-force

• Branch and bound / k-d tree

• Approx: Greedy proximity graph; locality sensitive hashing

Ryan McDonald Classification AthNLP 2025 86 / 119

Outline

1 Terminology, notation and feature representations

2 Linear Classifiers

Perceptron

Logistic Regression

3 Regularization

4 Dense Representations

5 Similarity-based Learning

6 Neural Networks

Ryan McDonald Classification AthNLP 2025 87 / 119

Weights and biases

Linear Classifier

y′ = argmax
(
Wϕ(x)⊤ + b

)
, W =


...

wy
...

 , b =


...
by
...


Ryan McDonald Classification AthNLP 2025 88 / 119

Weights and biases

Linear Classifier

y′ = argmax (Wx+ b) , W =


...

wy
...

 , b =


...
by
...


Ryan McDonald Classification AthNLP 2025 89 / 119

Linear classifiers as Matrix Multiplication

Let w1 = [w1
1 ,w

1
2 ,w

1
3], w2 = [w2

1 ,w
2
2 ,w

2
3], w3 = [w3

1 ,w
3
2 ,w

3
3] and x =

 x1
x2
x3


Wx+ b =

 w1
1 w1

2 w1
3

w2
1 w2

2 w2
3

w3
1 w3

2 w3
3


 x1

x2
x3

+

 b1
b2
b3



=

 (w1
1 × x1) + (w1

2 × x2) + (w1
3 × x3)

(w2
1 × x1) + (w2

2 × x2) + (w2
3 × x3)

(w3
1 × x1) + (w3

2 × x2) + (w3
3 × x3)

+

 b1
b2
b3



=

 (w1
1 × x1) + (w1

2 × x2) + (w1
3 × x3) + b1

(w2
1 × x1) + (w2

2 × x2) + (w2
3 × x3) + b2

(w3
1 × x1) + (w3

2 × x2) + (w3
3 × x3) + b3



=

 w1 · x+ b1

w2 · x+ b2

w3 · x+ b3

 =

 score(y1,x)
score(y2,x)
score(y3,x)

 =

 y1
y2
y3



Ryan McDonald Classification AthNLP 2025 90 / 119

On to neural networks!

Ryan McDonald Classification AthNLP 2025 91 / 119

Neurons, Layers and Connections

Input
Layer

Hidden
Layer

Neuron

Output
Layer

Layer
Connections

• A (dense / fully-connected) feed-forward neural network (FF-NN)
• AKA fully connected network (FCN) / multilayer perceptron (MLP)

• Input and output layers are special (more on this)

• However connections between layers take a similar form

Ryan McDonald Classification AthNLP 2025 92 / 119

Hidden Layer Connections

Inputs: hi-1 Outputs: hi

• Let hi ∈ RDi be the i th hidden layer with Di dimensions/neurons

• hi = σi (Wihi−1 + bi) ← weights and biases

• Wi ∈ RDi×Di−1 and bi ∈ Di are layer parameters

• σi is the layer’s (non-linear) activation function

Ryan McDonald Classification AthNLP 2025 93 / 119

Activation Functions

• Non-linearity by transforming/projecting the data

• Squashes output to finite range

• Examples ...

From Hughes and Correll 2016

Ryan McDonald Classification AthNLP 2025 94 / 119

Output Layer

final output
hidden classes
layer

• This was in the last lecture!

• y′ = argmax y ; where y = Wfinalhfinal−1 + bfinal

• yi often called the logit: the raw value/score

• Training?
• Common paradigm: take softmax of logits eyi∑

y∈Y ey

• Gives probability distribution P(y|x)
• Minimize some loss

Ryan McDonald Classification AthNLP 2025 95 / 119

Example NN Loss: Cross-Entropy

• Can use any differentiable loss function.

• Let W = {(Wi ,bi)}, i.e., parameters for all layers i

• Goal: Find W to maximize P(y|x;W) for all (x,y) ∈ D

• Cross-Entropy (CE)
• Intuition: Avg. bits needed to distinguish two distributions

• Let P be the truth: P(y′|xt) = 1 if y′ = yt and 0 otherwise

• CE = −EP logP = −
∑

(x,y)∈D P(y|x) logP(y|x;W)

• Therefore: CE = −
∑

(x,y)∈D logP(y|x;W)

• Min of CE = −
∑

(x,y) logP(y|x;W) = max of
∑

(x,y) logP(y|x;W)

• Cross-entropy = Maximum Likelihood / log-loss.

Ryan McDonald Classification AthNLP 2025 96 / 119

Examples: NN for non-classification tasks

Scalar/Real-value

Loss Function
Mean-Squared Error (MSE)

Regression

Ryan McDonald Classification AthNLP 2025 97 / 119

Examples: NN for non-classification tasks

Vector Outputs

Example: Next Mouse Click

Predict: x-y coordinates

Loss: Euclidean Distance

x

y

Ryan McDonald Classification AthNLP 2025 98 / 119

A Wee Example

• x ∈ R2

• h = tanh(Wx+ b) with W ∈ R3×2 and b ∈ R3

• |Y| = 2 with y = W′h+ b′ with W′ ∈ R2×3 and b′ ∈ R2

• Cross-entropy:
• L(W; (x,y)) = − log(P(y|x)) = − log ey∑

y′∈Y ey′

x0

x1

y0

h0

y1

h1

h2

tanh(
 W02*x0 +
 W12*x1 +
 b2
)

tanh(
 W00*x0 +
 W10*x1 +
 b0
)

tanh(
 W01*x0 +
 W11*x1 +
 b1
)

W’00*h0 +
W’10*h1 +
W’20*h2 +
b’0

W’01*h0 +
W’11*h1 +
W’21*h2 +
b’1

ey0

ey0 + ey1

ey1

ey0 + ey1

P(y0| x)

P(y1| x)

Often called ‘softmax’ layer

Ryan McDonald Classification AthNLP 2025 99 / 119

Neural Networks So Far

• Neural network structure (FF-NN; FCN; MLP)

• Input layer: for now, assume given to us x ∈ RD

• Outputs: y ∈ Y

• Hidden layers: hi ∈ RDi ; with hi = σi (Wihi−1 + bi)
• Thus, model parameters W = {Wi , bi | ∀i}
• Including last output layer parameters

• Loss function: L(W; (x,y)) – usually log-loss/cross-entropy

Ryan McDonald Classification AthNLP 2025 100 / 119

Neural Networks: Optimization

• Hidden layers make model non-convex!

• No single global optimum. Must settle for a local one.

• If loss function and activation functions are differentiable, then can be
optimized with gradient-based techniques (e.g., gradient descent)

• Gradient computation a little trickier
• Solution: backpropagation (Rumelhart et al. (1988))

Ryan McDonald Classification AthNLP 2025 101 / 119

Backpropagation and the Chain Rule

• We need to compute ∇WL(W;D) = [∂L
∂w0

, ∂L
∂w1

, . . .], ∀wi ∈W

• For linear classifiers, W were feature weights

• For NNs, W is the set of all weights, e.g., W = {Wi ,bi | ∀i}

• Chain rule: z = g(y) and y = f (x), then ∂z
∂x = ∂z

∂y
∂y
∂x

Ryan McDonald Classification AthNLP 2025 102 / 119

Toy Example: Analytical Partial Derivatives

Full derivation examples

All base derivativesx1

x2 h1

h2

w1*x1
+

w2*x2

x3

x4

w3*x3
+

w4*x4

u1*h1
+

u2*h2
y

L(y, y’) = (y’-y)2

We want
∂L
∂u1

∂L
∂u2

∂L
∂w1

∂L
∂w2

∂L
∂w3

∂L
∂w4

∂L
∂y = 2(y’-y)

∂y
∂h1 = u1 ∂y

∂h2 = u2

∂y
∂u1 = h1 ∂y

∂u2 = h2

∂h1
∂w1 = x1 ∂h1

∂w2 = x2

∂h1
∂x1 = w1 ∂h1

∂x2 = w2

∂h2
∂w3 = x3 ∂h1

∂w4 = x4

∂h1
∂x3 = w3 ∂h1

∂x4 = w4

w1 w2

w3 w4

u1 u2

∂L
∂u1

∂L
∂y

∂y
∂u1= = 2(y’-y)*h1 ∂L

∂w1
∂L
∂h1

∂h1
∂w1

∂L
∂y

∂y
∂h1

∂h1
∂w1= = = 2(y’-y)*u1*x1

Ryan McDonald Classification AthNLP 2025 103 / 119

Toy Example: Backpropagation at Work

• Analytically computing chain rule in deep networks is onerous

• Backpropagation

• Forward pass: compute values at neurons and final loss
• Backward pass: compute ∂L

∂wi
at each neuron

• ∂L
∂wi

of parameter neurons form gradient

2

4 8

-5

2*2
+

4*1

-5

3

1*-5
+

0*3

0.5*8
+

1*-5
-1

2 1

1 0

0.5 1

∂L
∂y = 2(y’-y) = 4

4

∂L
∂u1

∂L
∂y=

= 4*h1 = 4*8 = 16

∂y
∂u1

16

∂L
∂h1

∂L
∂y=

= 4*u1
= 4*0.5 = 2

∂y
∂h1

2

= 2*x1 = 2*2 = 4

4

Neuron derivatives

∂L
∂y = 2(y’-y)

∂L
∂h1

∂L
∂y

∂y
∂h1=

∂L
∂h2

∂L
∂y

∂y
∂h2=

∂L
∂u1

∂L
∂y

∂y
∂u1=

∂L
∂u2

∂L
∂y

∂y
∂u1=

∂L
∂w1

∂L
∂h1

∂h1
∂w1=

∂L
∂w2

∂L
∂h1

∂h1
∂w2=

∂L
∂w3

∂L
∂h1

∂h2
∂w3=

∂L
∂w4

∂L
∂h1

∂h2
∂w4=

∂L
∂w1

∂L
∂h1

∂h1
∂w1=

Let true y’ = 1

Ryan McDonald Classification AthNLP 2025 104 / 119

Input layer

VERB

NOUN

.

.

.

.

.

.

work

• Consider classifying a word in isolation with a part-of-speech tag7

• Input is a word x ∈ RD

• There is a fixed a finite vocabulary V, i.e., x ∈ V

7This is contrived. We usually use context.
Ryan McDonald Classification AthNLP 2025 105 / 119

Input layer = Embedding layer

.

.

.

.

.

.

work

• Input is a word x ∈ RD for all x ∈ V

• We store these in a |V| × D look up table
• These are the model word embeddings
• AKA embedding layer; word look-up table; ...

Ryan McDonald Classification AthNLP 2025 106 / 119

Input layer = Embedding layer

• Static embedding layer
• Fixed word embeddings; not updated during training
• Examples: SVD; word2vec; glove; ...

• Dynamic embedding layer
• Randomly initialize word embeddings
• Learn during training of the full network
• Updated like any other layer during backpropagation

• Static + Dynamic
• Initialize model with static embeddings; update dynamically
• Combination: part of embedding layer is static; part is learned

Ryan McDonald Classification AthNLP 2025 107 / 119

Input layer

.

.

.

.

.

.

work

VERB

NOUN

.

.

.

.

.

.

work

• Static (e.g., word2vec) or dynamic word embeddings give us input
layer

Ryan McDonald Classification AthNLP 2025 108 / 119

Dynamic Input layer

x1

x2 h1

h2

w1*x1
+

w2*x2

x3

x4

w3*x3
+

w4*x4

u1*h1
+

u2*h2
y

L(y, y’) = (y-y’)2

We want
∂L
∂u1

∂L
∂u2

∂L
∂w1

∂L
∂w2

∂L
∂w3

∂L
∂w4

w1 w2

w3 w4

u1 u2

∂L
∂x1

∂L
∂x2

∂L
∂x3

∂L
∂x4

• Gradient now includes input neurons, ∂L
∂xi

• Every value in the entire lookup table is a parameter!

Ryan McDonald Classification AthNLP 2025 109 / 119

Variable Length Inputs

• But what if input is a whole document and not just a single word?
• Feed-forward neural networks assume a fixed-length input, x ∈ RD

• Documents are not fixed length

POSITIVE

NEGATIVE

The
steak
was
cooked
to
perfection

Ryan McDonald Classification AthNLP 2025 110 / 119

Variable Length Inputs: Options

1 Truncate document at fixed length K, x ∈ RK×D

2 Average embeddings (below), x ∈ RD

3 convolutional (CNNs) and recurrent neural networks (RNNs)8

POSITIVE

NEGATIVE

The

steak

was

cooked

to

perfection

Average

8
RNNs not covered. See https://athnlp.github.io/2024/ppts/Day02AthNLP2024-Lec2-BPlank-handout.pdf

Ryan McDonald Classification AthNLP 2025 111 / 119

Convolutional Neural Networks

POSITIVE

NEGATIVE

<sos>

The

steak

was

cooked

to

perfection

<eos>

Pooling Layer

MLP

MLP

MLP

MLP

MLP

MLP

MLP

MLP

Convolutional
Layer

padding
MLP

receptive field

filters

Waibel et al. (1989) is often cited
as earliest example of a CNN

Ryan McDonald Classification AthNLP 2025 112 / 119

Convolutional Neural Networks

• Convolutional layer
• A NN sub-architecture
• Slides over input at a fixed stride, usually 1
• Receptive field: fixed size input (e.g., n-gram)
• Filter: MLP that creates a single vector output per position
• Can be multiple filters: Almost always shared positionally; sometimes

even per layer

• Pooling layer
• Converts convolutional output to a single fixed-length vector
• Average pooling: average outputs of convolutional layers
• Max pooling: position-wise max over outputs of convolutional layers
• NN: Can also learn this, e.g., attention.

Ryan McDonald Classification AthNLP 2025 113 / 119

Deep Convolutional Neural Networks

POSITIVE

NEGATIVE

<sos>

The

steak

was

cooked

to

perfection

<eos>

MLP

MLP

MLP

MLP

MLP

MLP

MLP

Convolutional Layer Pooling Layer

Convolutional Block

POSITIVE

NEGATIVE

<sos>

The

steak

was

cooked

to

perfection

<eos>

MLPConv.
Block

Conv.
Block

Conv.
Block

Ryan McDonald Classification AthNLP 2025 114 / 119

Core Neural Network Summary

• Fully-connected Feed-forward Neural Networks

• Neurons, layers and connections

• Output layers (linear) and losses

• Back propagation
• Input layers

• Static vs dynamic vs mixed

• Variable length inputs: CNNs

• Deep NNs – keep adding layers

Ryan McDonald Classification AthNLP 2025 115 / 119

Where Does Network Structure Come From?

• Hyperparamters: input/hidden dimensions; activation functions; ...
• Usually empirical but becoming standardized (e.g., transformers)

• Deep Learning = lot’s of layers. How many? Empirical accuracy vs.
resources.

• Fully-connected/dense required?
• No!
• Sparse layers / chunks. Especially in LLMs
• But for FF-NN components usually full-connected
• Any efficiency concerns lessened by modern architectures (GPU, TPU)

Ryan McDonald Classification AthNLP 2025 116 / 119

Main Points (Parametric ML)

Analytical
Backpropagation

Inputs
Sparse / Dense

Feature Engineering
Word Embeddings

One-hot
Average Dense

Convolutional-NN

Output
Binary / multiclass

Softmax or raw
Log-loss, hinge loss, ...

POSITIVE

NEGATIVE

The
steak
was
cooked
to
perfection

Model
Perceptron

Logistic Regresion
SVM

...
Feed-Forward-NN
Convolutional-NN

∇w L(w, D) → (S)GD

Ryan McDonald Classification AthNLP 2025 117 / 119

... in Words

• Sparse (binary) vs. dense (embeddings) features

• Optimization: Use gradient-based techniques
• Linear Classifiers

• Usually sparse features with block representations
• Loss functions define model
• Regularization necessary for good performance

• Sparse vs. Dense representations

• Parameteric (e.g., linear cls) vs. Non-parametric (e.g., knn) ML
• Neural Networks

• Final layer = linear classifiers
• Hidden layers = linear + non-lin activation
• Compute gradient with backpropagation
• Input layer: static (e.g., word2vec) vs. dynamic (backprop)
• (Deep) CNNs for variable length inputs

Ryan McDonald Classification AthNLP 2025 118 / 119

	Terminology, notation and feature representations
	Linear Classifiers
	Perceptron
	Logistic Regression

	Regularization
	Dense Representations
	Similarity-based Learning
	Neural Networks

