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Classifiers

"I love this movie.
I've seen it many times H
NOUN or VERB and it's still awesome." 0
How does sodium bicarbonate work ? "This movie is bad.

I don't like it it all. —_—

It's terrible."

INBox

- QDO Set my alarm tomorrow for 1@am -> Alarm
+»| clAssIFER |-

SPAM FOLDER Quickest way to Boston -> Navigation

Why is there summer and winter -> Answer seeking
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® Focus: machine learning fundamentals

® Specific to language as input modality
® Not specific applications

® |f you miss a detail, don't worry

® |mportant to get broad concepts
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Linear Classifiers

This lecture is 1/2 about linear classifiers!
Why? It's 2025 and everybody uses neural networks.
® The underlying machine learning concepts are the same

® The theory (statistics and optimization) are much better understood

® |inear classifiers are a component of neural networks.
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Linear Classifiers and Neural Networks
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Linear Classifiers and Neural Networks
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Linear Classifiers and Neural Networks

Doc

Handcrafted
Features Cat

Linear Classifier

Ryan McDonald Classification AthNLP 2025



Linear Classifiers and

Output
Probabilities

® Transformers: 99% of LLMs/GenAl

® ChatGPT; GPT
[}
R
o Gemini Forward
[ ] Llama Add & Norm
Multi-Head
® DeepSeek Attonion |
x
® xAl/Grok
N
® Last layer = linear classifier Tl Head Moo
Attention Attention
. A > A >
® Last layer predicts next word/token =)
. . Positional A A Positional
® |.e., last layer is a classifier! Encoding Encoding
En) ()
. ml ing m ing
® Also: Many other linear layers! T T
Inputs Outputs
(shifted right)
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Binary Classification: Spam Detection

Task: Identify if an incoming email/SMS/DM/etc. is spam or not.

This is a binary classification problem.

SPAM

CLASSIFIER

SPAM
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Multiclass Classification: Topic Labeli

Task: given a news article, determine its topic (politics, sports, etc.)

This is a multi-class classification problem.

Z AlphaGo Beats Go Human Champ: sports
Godfather Of Deep Learning Tells Us Do L.
& Not Be Afraid O Al politics
[P technol ogy
economy
weather
culture
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Let’s Start Simple

® Example 1 — sequence: * ¢ o; label: —1
® Example 2 — sequence: x O A; label: —1
® Example 3 — sequence: x A #; label: +1
® Example 4 — sequence: ¢ A o; label: +1
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Let’s Start Simple

® Example 1 — sequence: * ¢ o; label: —1
® Example 2 — sequence: x O A; label: —1
® Example 3 — sequence: x A #; label: +1
® Example 4 — sequence: ¢ A o; label: +1

® New sequence: x ¢ o; label ?
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Let’s Start Simple

® Example 1 — sequence: * ¢ o; label: —1
® Example 2 — sequence: x O A; label: —1
® Example 3 — sequence: x A #; label: +1
® Example 4 — sequence: ¢ A o; label: +1

® New sequence: x ¢ o; label —1

® New sequence: x ¢ Q; label ?
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Let’s Start Simple

® Example 1 — sequence: * ¢ o; label: —1
® Example 2 — sequence: x O A; label: —1
® Example 3 — sequence: x A #; label: +1
® Example 4 — sequence: ¢ A o; label: +1

® New sequence: x ¢ o; label —1
® New sequence: x ¢ Q; label —1

® New sequence: x A o; label ?
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Let’s Start Simple

® Example 1 — sequence: * ¢ o; label: —1
® Example 2 — sequence: x O A; label: —1
® Example 3 — sequence: x A #; label: +1
® Example 4 — sequence: ¢ A o; label: +1

® New sequence: x ¢ o; label —1
® New sequence: x ¢ Q; label —1

® New sequence: x A o; label ?

Why can we do this?
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's Start Simple: Machine Learning

® Example 1 — sequence: x ¢ o; label: —1
® Example 2 — sequence: x O A; label: —1
® Example 3 — sequence: x A #; label: +1
® Example 4 — sequence: ¢ A o; label: +1

® New sequence: x ¢ Q; label —1

Label —1 Label +1
_ count(» and —1) _ 2 _ __ count(x and +1) _ 1 _
P(—1lx) = —countx) = 3 = 0.67 vs. P(+1]*) = —Count(x)  — 3~ 0.33
_ count(e and —1) _ 1 _ _ count(e and +1) _ 1
P(—10) = ~—count(e) ~ — 2= 0.5 vs. P(+1]0) = —Count(e) ~ — 2 0.5
_ count(@ and —-1) _ 1 _ _count(® and +1) _ o _
P(—1|90) = T Count(@) T 1= 1.0 vs. P(+1|9) = —count(@) T 1= 0.0
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's Start Simple: Machine Learning

® Example 1 — sequence: x ¢ o; label: —1
® Example 2 — sequence: x O A; label: —1
® Example 3 — sequence: x A #; label: +1
® Example 4 — sequence: ¢ A o; label: +1

® New sequence: x A o; label 7

Label —1 Label +1
_ count(x and —1) _ 2 _ __ count(x and +1) _ 1 _
P(—1lx) = ~count(x) ~ — 3= 0.67 vs. P(+1]*) = —Count(x)  — 3~ 0.33
_ count(a and —1) _ 1 _ _ count(a and +1) _ 2 _
P(—1]A) = —count(ay =3 =033 vs. P(+1|A) = —count(a) = 5 =067
_ count(oand —1) _ 1 _ _ count(o and +1) _ 1 _
P(—1J0) = 7“)3“(0) =5 =05vs. P(+1fo) = 7“)3“(0) =5=05

Ryan McDonald Classification AthNLP 2025 10/119



Machine Learning

@ Define a model/distribution of interest
® Make some assumptions if needed
© Fit the model to the data
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® Terminology, notation and feature representations
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Some Notation: Inputs and Outputs

® Input x € X
® e.g., a news article, a sentence, an image, ...
e Qutputy €Y
® e.g., spam/not spam, a topic, a translation, an image segmentation

® Input/Output pair: (z,y) € X x Y
® e.g., a news article together with a topic
® e.g., a email together with a spam/no spam label
® e.g., an image partitioned into segmentation regions
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Supervised Machine Learning

® We are given a labeled dataset of input/output pairs:

D= {(mtvyt) @1 CXxY

Goal: use it to learn a classifier h : X — Y that generalizes well to
arbitrary inputs.

At test time, given x; € X, we predict

/

y = h(xzy).

Hopefully, vy’ ~ y; most of the time.
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Things can go by different names depending on what Y is...
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Regression

Deals with continuous output variables:
® Regression: Y =R

® e.g., given a news article, how much time a user will spend reading it?

¢ Multivariate regression: Y = RX, where K > 1
® e.g., predict the X-Y coordinates in an image where the user will click
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Classification

Deals with discrete output variables:

¢ Binary classification: Y = {£1}
® e.g., spam detection, positive/negative sentiment

¢ Multi-class classification: Y = {1,2,..., K}
® e.g., topic classification, positive/negative/neutral sentiment

® Structured classification: Y exponentially large and structured
® e.g., machine translation, caption generation, image segmentation

What about GenerativeAl?

Ryan McDonald Classification AthNLP 2025 17 /119



Let's assume a multi-class classification problem, with || labels (classes).
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Feature Representations

Feature engineering is an important step in linear classifiers:

® Bag-of-words features for text, also lemmas, parts-of-speech, ...
® Embeddings (e.g., word2vec)
® SIFT features and wavelet representations in computer vision

® External database, APIs and knowledge resources
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Feature Representations

We need to represent information about «

Typical approach: define a feature map ¢ : X — RP
® ¢(x) is a high dimensional feature vector

We can use feature vectors to encapsulate Boolean, categorical, and
continuous features

® To start, we will focus on sparse binary features

® (Categorical features can be reduced to a range of one-hot binary
values

® We look at continuous (dense) features later
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® 1 is a document and y is a topic

1 if & contains the word “interest”
0 otherwise

8@ = {
¢;(x) = % of words in = with punctuation
® x is a word and y is a part-of-speech tag

1 if £ ends in “ed”
0 otherwise

¢j(z) = {
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Feature Representati

® x is a name

_ 1 if & contains “George”
Pbo(z) *{ 0  otherwise

_ 1 if & contains “Washington”
P1(=) = { 0  otherwise

_ 1 if « contains “Bridge”
$2(z) = { 0  otherwise

b3(m) =

1  if & contains “General”
0  otherwise

1 if @ contains an unknown word

ba(x) = { 0  otherwise

® x=General George Washington — ¢(x) =[1 101 0]

® x=George Washington Bridge — ¢(x) =[1 11 0 0]

® x=George Washington University — ¢(x) =[1 100 1]

® x=George George George of the Jungle — ¢p(x) =[1 000 1]
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Feature Engineering and NLP Pipelines

Classical NLP pipelines consist of stacking together several linear classifiers

Each classifier's predictions are used to handcraft features for other
classifiers

Example: Part-of-speech — Named Entities — Topic Classification

® Part-of-speech: nouns, determiners for Typed Named Entities
® E.g., Google noun vs. Google verb
® Typed Named Entities: Categories for topic classification

® E.g., Which George Washington? Person, University/Organization,
Bridge/Location?
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® Linear Classifiers
Perceptron

Logistic Regression
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Linear Classifiers — Weights/Parameters

® Parametrized by a weight vector w € RP (one weight per feature)

Eg., D=5 w=1[0.3,1.2,-5.4,3.8,—-0.09]

¢(x) and w are vectors of same length — D

We actually need |Y| weight vectors w,, € RP
® j.e., one weight vector per output label y
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Linear Classifiers — Weights/Parameters

I' Important Concept !

w,, is weight/parameter vector for output label y
Let W = [wy,..., wpy]

W is a concatenation of all w,,

Example
® w; = [171], wo = [2,2], w3 = [3,3] for |H| =3
® Then W=[1,1,2,2,3,3]

Ryan McDonald Classification

AthNLP 2025
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Linear Classifiers — Predictions

® The score? of a particular label is based on a linear combination of
features and their weights, e.g., for each y € Y

score(y, x) = wy - ¢(x Z'wuy di(x

e At test time, predict the class y’ which maximizes this score:

y' = argmax score(y, )
yeyY

® At training time, different strategies to learn wy,'s yield different
linear classifiers: perceptron, logistic regression, SVMs, ...

2Called logit in NNs.
Ryan McDonald Classification AthNLP 2025 27 /119



Linear Classifiers — Example

D =5, Y = {Person (per), Location (loc)}

’Ll]per = [03, 12, —54, 38, —009]

W) = [~0.6,2.4,4.0, -2.1,0.1]

® x =George Washington Bridge — ¢(x) =[1,1,1,0,0]

y =arg max score(y, x)
ye{loc,per}
=arg  max Wy - P(x)
ye{loc,per}
—arg  max {[-0.6,2.4,4.0,—2.1,0.1],oc - [1,1,1,0,0],
ye{loc,per}

[0.3,1.2,-5.4,3.8, —0.09]per - [1,1,1,0,0] }

arg max  {5.8|5c, —3.9per}
ye{loc,per}

= loc
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Linear Classifiers — Bias Terms

Often linear classifiers are presented as

score(y.@) = w,- ¢(z)+ by

where by, is a bias or offset term

This can be folded into ¢(x) via a constant feature

° le, ¢(x) = [p(x),1] and wy = [wy, by]

For now, we assume this for simplicity
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Commonly Used Notation in Neural Networks

Handcrafted
Features Cat

Linear Classifier

y' = argmax (W(ﬁ(w)T + b) , W= wy |, b= by
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Binary Linear Classifier

With binary labels (Y = {£1}) we often use a minimal parametrization:

"= a a : +b
y g max, wy () + by
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Binary Linear Classifier

With binary labels (Y = {£1}) we often use a minimal parametrization:

= 2 a . + b
y g max, wy (x) + by

_ 1 ifwir - @(®) + by > wor - P(x) + by
- —1 otherwise
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Binary Linear Classifier

With binary labels (Y = {£1}) we often use a minimal parametrization:

= 2 a . + b
y g max, wy (x) + by

_ 1 ifwir - @(®) + by > wor - P(x) + by
—1 otherwise

+1 if (w+1 — 'w_1) . ¢(:13) + (b+1 — b_1) >0
—1 otherwise
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Binary Linear Classifier

With binary labels (Y = {£1}) we often use a minimal parametrization:

= 2 a . + b
y g max, wy (x) + by

_ 1 ifwir - @(®) + by > wor - P(x) + by
—1 otherwise

+1 if (w+1 — 'w_1) . ¢(:13) + (b+1 — b_1) >0
—1 otherwise

= sign((wy1 — w_1) -@(x) + (by1 — b_1)).
——— —_——

v C

That is: only half of the parameters are needed.
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Binary Linear Classifier

Then (v, ¢) is an hyperplane that divides all points:

2 \
== Points along line

have scores of 0

A
=
g 2
4 o
&=

2
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Multiclass Linear Classifier

Defines regions of space.
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Linear Separability

® A set of points is linearly separable if there exists a w/W such that
classification is perfect

Separable Not Separable
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® Machine Learning = finding weights/parameters W/w
e Using data! Specifically D = {x¢, Yt } =1

® There are many algorithms for doing this
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® Linear Classifiers

Perceptron

Ryan McDonald Classification AthNLP 2025 36/119



Perceptron (Rosenblatt, 1958)

® |nvented in 1957 at the
Cornell Aeronautical
Laboratory by Frank
Rosenblatt

® |mplemented in custom-built
hardware as the “Mark 1
perceptron,” designed for
image recognition

® 400 photocells, randomly
connected to the “neurons.”
Weights were encoded in
potentiometers

® Weight updates during
learning were performed by
(Extracted from Wlklpedla) electric motors.
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Perceptron in the News...

NEW NAVY DEVICE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer,
today that it expects will be
able to walk, talk, see, write,
reproduce itself and be . con-|
scious of its existence,

The embryo—the Weather,
Bureau's $2,000,000 “704” com-|
puter—learned to differentiate
between right and left after|
fifty aftempts in the Navy's
demonstration for newsmen.,

The service said it would use|
this principle to build the first|
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
|signer of the Perceptron, con-
ducted the demonstration. He
said ‘the machine would be the
first device to think as the hu-

man brain. As do human be-

ings, Perceptron will make mis-
takes at first, but will grow,|
wiser as it gains experience, he
said. .

Dr. Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, Buf-
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers.

‘Without Human Controls

The Navy said the perceptron
would be the. first non-living
mechanism “capable of receiv-
ing, recognizing and identifying
its surroundings without -any
human training or control.” I

The “brain” is designed to
remember images and informa-
tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape. .

Later Perceptrons will be able
to recognize people and call out
their names and instantly trans-
late speech in one language to
speech or writing in another
language, it was predicted.

Mr, Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce themselves on an assembly
|line and which would be con-
|scious of their existence.

Classification

1958 New York
Times...

In today’'s demonstration, the
“704” was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing

In the first fifty trials, the
machine made no distinction be-
tween them. It then started
registering a “Q” for the left
squares and “O” for the right
squares.

Dr. Rosenblatt said he could
explain why the machine
learned only in highly technical
terms. But he said the computer
had undergone a ‘“self-induced
change in the wiring diagram.”
The first Perceptron will
have about 1,000 electronic

jon cells” T g
electrical impulses from an eye-
like scanning device with
photo-cells. The human brain
has 10,000,000,000 responsive
cells, including 100,000,000 con-
nections with the eyes.

AthNLP 2025
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Perceptron Algorithm

® Online algorithm: process one data point at each round
® Take x;; apply the current model to make a prediction for it

y' = argmax score(y, x;)
yey

® |f prediction is correct, proceed

® Else, correct model: add feature vector w.r.t. correct output &
subtract feature vector w.r.t. predicted (wrong) output

Wy, = Wy, + ¢(mf)

wy = wy — (we)
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Perceptron Algorithm

input: labeled data D
initialize W =0, i.e., wy =0, Vy
repeat
observe example (x;,y:) € D
predict y' = arg maxycy score(y, x:)
if y' # y, then
update wy, = wy, + ¢(x;)
update Wy = wy — @(x;)
end if
until stopping criterion
output: model weights W

3

3E.g., max iterations; zero/e errors
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Perceptron’s Mistake Bound

A couple definitions:

® the training data is linearly separable with margin v > 0 iff there are
weight vectors u, with |luy | =1 such that

’U,yt : d)(ml’) 2 uy’ : ¢(xt) + 7> VI, Vy/ 75 Y.

® radius of the data: R = max; ||¢(x:)|.
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Perceptron’s Mistake Bound

A couple definitions:

® the training data is linearly separable with margin v > 0 iff there are
weight vectors u, with |luy | =1 such that

’U,yt : d)(ml’) 2 uy’ : ¢(wt) + 7> VI, vy/ 75 Y.
® radius of the data: R = max; ||¢(x:)|.

Then we have the following bound of the number of mistakes:

Theorem (Novikoff (1962))

The perceptron algorithm is guaranteed to find a separating hyperplane
2 o
after at most 2%— mistakes.

Proof: https://proceedings.mlr.press/v97/beygelzimeri9a/beygelzimeri9a-supp.pdf
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What a Simple Perceptron Can and Can’t Do

® Remember: the decision boundary is linear (linear classifier)
® It can solve linearly separable problems (OR, AND)

OR (x1,$2) ‘AND (x_lv fl'fg) AND (xlvx_Q)

A 4 ,
I~ A A ! A s O I o o,
N N N /7 N y;
) N ) , ) ,
N 7
0 o A o], o o 0 o 7 A
/7
N > ’ >
0 I 0 I 0 o
xrq T T
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What a Simple Perceptron Can and Can’t Do

. but it can’t solve non-linearly separable problems such as simple
XOR (unless input is transformed into a better representation):

XOR (1, x2) XOR (z1, x9)
T A
I A o |i«| NA
N SN RN
0 o A % 0 o LA
5 < NI
0 L >
1 AND (.Tl, 2)
XOR(Xl,XQ) = XOR(AND(Xl,XQ) AND(Xl,Xz))

® Result attributed to Minsky and Papert (1969) but was known before.
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® Linear Classifiers

Logistic Regression

Ryan McDonald Classification AthNLP 2025 44 /119



Logistic Regression

Define a conditional probability:

exp(score(y, T
P(y|x) = p( > (y )) Zy = Z exp(score(y’, x))
* y'ey

Probability distribution: >, P(ylxz) =1 and P(y|z) > 0, Vy

Exponentiating and normalizing score = softmax transformation®
Note: still a linear classifier

exp(score(y, x))
Zy

exp(wy - $())
Zz

= arg m;x exp(wy - d(x))

arg max P(y|x) arg max
y y

= argmax
Y

= argmax wy - ¢(x)
y

*More later during neural networks!
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Logistic Regression

exp(score(y, x)) _ exp(wy - d(x))
Zs Ze

Pw(ylz) =

® Let W= [wy,...,w)y|] be a vector concatenating all weights w,,
How do we learn W?
® Set W to minimize the negative conditional log-likelihood:

w = argmv\i]n — log (H Pw(yt|:ct)> :argr?/\i?n —Zlog Pw(y:|x:)

t=1 t=1

argmin 3 (108 Y expluy - 9l) — wy, - () |
t=1 y’

i.e., assign as much probability mass as possible to the correct labels!
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Logistic Regression

® This objective function is convex

® Therefore any local minimum is a global minimum

® No closed form solution, but lots of numerical techniques

® Gradient methods (gradient descent, conjugate gradient)
® Quasi-Newton methods (L-BFGS, ...)
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Recap: Convex functions

Pro: Guarantee of a global minima v/

/

) I (0, 7 (v))
"

S _—

Figure: lllustration of a convex function. The line segment between any two
points on the graph lies entirely above the curve.
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Recap: Gradients

A gradient of a function f(W) wrt parameters W = [w, ..., wp] is:
0 0
VwfW) = | —fF, ..., —fF
w ( ) [8W1 8Wp ]

l.e., the vector of partial derivatives of f, which is the derivative of f wrt
to each variable w;

The gradient gives the direction and fastest rate of increase of f at point
W

When a gradient is zero we are at a stationary point of f. For convex
functions that means global minima.
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Recap: Iterative Descent Methods

Goal: find the minimum/minimizer of f : R — R
® Proceed in small steps in the optimal direction till a stopping
criterion is met (usually norm of gradient is small)
¢ Gradient descent (GD) updates: w < w — nVf(w)

® 1) is the step size / learning rate

Figure: lllustration of gradient descent. The red lines correspond to steps taken
in the negative gradient direction.
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Logistic Regression: Gradient Descent (GD)

Let L(W; (x,1)) = (log 32, exp(w), - (x))~wy - ¢(=))

Call this our loss function for instance x,y

® We want to minimize over D = {(x;, y;)}+=1 with GD

® le, Find argminyg >, ; L(W; (¢, yt))
® |ogistic-regressions loss function often called log-loss or cross-entropy

GD update will look like

W = W—-nVyw (1 LW; (x¢,y1)))
= W—0>,_, Vwl(W; (z+, yt))

Need to calculate VywL(W; (x,vy)): gradient of L w.r.t. W

This is a batch optimization: updates are over whole dataset
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Gradient Descent (SGD)

SGD is like perceptron — update every instance:

® Pick (xt,y:) randomly
e Update W =W — nVyL(W; (z,y:))

® j.e. we approximate the true gradient with a noisy, unbiased, gradient,
based on a single sample

® Variants exist in-between (mini-batches)

® GD and SGD guaranteed to find the optimal W (for suitable step
sizes)
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Logistic Regression: Simple SGD Algorithm

input: labeled data D, step size 1

initialize: W =0, i.e., wy =0, Vy

repeat
observe example (x;,y:) € D
Update W =W — nVwL(W; (¢, y:))

until stopping criterion

output: model weights W

® Picking step sizes example of hyperparameter tuning
® Stopping criterion usually gradient is small: ||V L(W; (x¢, y¢))|| < €, Vt

® Small (or zero) gradient is stationary point — global minimum
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Computing the Gradient: Vi L(W; (z,y))

® We need VyyL(W; (x,v)), where

L(W; (,y)) =log Y _ exp(wy - p(x))—wy - p(x)
y/
W = ['wl,...,wy/,...,wy,...,w|y|]
Some reminders:

O Vi log F(w) = g5V F(w)
@ Vo exp F(w) = exp(F(w)) Ve F (w)

Ryan McDonald Classification AthNLP 2025
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Computing the Gradient

Vw (Iog Z exp(wy - P(x))—wy - d)(az))

y’

VwL(W; (z,y))

= Vw IogZeXp(wy/ - @(w))—Vwwy - ()

y’

) Z ol @) 2 7 R H@) Vs - 9(a)

= Z exp(w x))Vww,y - ¢p(x)—Vwwy - (x)

= > eXp(z—;d)())vwwy/ - ¢(@)=Vwwy - $()

y’

= Y Pw(y[x)Vwwy - ¢(x)—Vwwy - ¢().

y’
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Computing the Gradient

Vwl(W;(z,y)) =>_, Pw(y[x)Vwwy - ¢(z)-Vww,y - ¢(z)

Let's look at the partial derivative wrt to a variable i: 32 L(W; (z,y))

Remember that W = [wy, ..., wy/, ..., wy, ..., wy|]
Cases:

@ i indexes a weight w; in W that is in wy,

3 Pl @) 5wy 6(2) — gy 9(@) = Pu(yle)i(w)— (@)

@ i indexes a weight w; in W that is in w,, where 3y’ # y

S Py @)y - $(@) — 5wy - D) = Puly2)di()
o i i
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What does the update look like?

Combine all 3w, INto vector updates for each wy,

Cases:

@ For true output y
wy = wy — 1 (Pw(ylz)p(z)—d(z))

@ Fory #y
Wy = Wy — 1) (Pw(y/|$)d)(33))
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SGD for Logistic Regression

input: labeled data D, step size 1

initialize: W =0, i.e,, wy =0, Vy

repeat
observe example (¢, y:) € D

Wy, = Wy, — 7 (Py(y:|x)p(z)—d(x))
Wy = wy — 1 (Pw(y'|z)d(x)) for y' # y:

until stopping criterion

output: model weights W
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Logistic Regression Summary

® Define conditional probability

exp(wy - ¢(x))

Pyw(y|z) = 7

® Set weights to minimize negative conditional log-likelihood:

W = arg minyy Z — log Pyw(y:|x:) = argmin,, Z L(W; (¢, yt))
t t

® Can find the gradient and run gradient descent (or any gradient-based
optimization algorithm)
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The Story So Far

® | ogistic regression is probabilistic: minimizes neg log-likelihood
® also called log-linear model and max-entropy classifier
® no closed form solution
® For training instance (x,y), SDG updates look like

wy = wy + 1 (P(x) — Pw(ylz)d(z))

Wy = Wy — n(Pw(y'|x)p(x)) fory' #y
® Perceptron is non-probabilistic; minimizes training errors

® Assumes linearly separable, though works well anyways
® For training instance (x,y), updates look like

wy = wy + ¢(x)
Wy = wy — P(x) for y' £y

SGD updates for logistic regression and perceptron look similar!
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Outline

© Regularization

Ryan McDonald
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If the model is too complex (too many parameters) and the data is scarce,
we run the risk of overfitting:

Underfitting X Balanced X Overfitting
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Regularization

In practice, we regularize models to prevent overfitting

arg minyy Z L(W; (¢, yr)) + AQ(W),

t=1

where Q('W) is the regularization function, and A controls how much to
regularize.

® Gaussian prior (f2), promotes smaller weights:

QW) = W3 = W?.

® Laplacian prior (¢1), promotes sparse weights!

QW) = [Wls = >~ Wi
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Empirical Risk Minimization

srgmimg 30 LW (x.6) + A2(W),

® This formulation is generally called Empirical Risk Minimization.
® |t consists of a Loss/Risk function that we want to minimize;
[

And (optionally) a regularization function that stops us from
overfitting to the data.

Useful abstraction that covers most modern ML algorithms.

Linear classifiers: different choices of L and €2 invoke specific models
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Logistic Regression with ¢/, Regularization

Still optimize with GD or SGD
What is the new gradient?

> Vwl(Wi (@6, ye) + ViwdQ(w)
t=1

A
= 37 VLW (e, 50)) + Vo' W)
t=1

We know VyL(W; (z¢, y:))
Just need Va3 | W2 = 2W

Ryan McDonald Classification
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Should match as much as possible the metric we want to optimize at test
time

Should be well-behaved (continuous, maybe smooth) to be amenable to
optimization (this rules out the 0/1 loss)

Some examples:

® Squared loss for regression

® Negative log-likelihood (cross-entropy): multinomial logistic regression
® Hinge loss: support vector machines

® A bunch more ...
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Linear Classifier

Could not possible cover everything.
Please look at Andre Martins excellent lecture for LXMLS:

* http://lxmls.it.pt/2019/LINEAR_LEARNERS.pdf
® Also covers
® Naive Bayes
Support Vector Machines (SVMs)

[}
® SVMs v Perceptron v Log Reg
® Non-Linear Classifiers # Neural Networks

® K-Nearest neighbors (we'll do this)
® Kernel methods (SVMs)
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O Dense Representations

Ryan McDonald Classification AthNLP 2025 68 /119



Sparse Feature Representations

® x is a name

_ 1 if & contains “George”
Pbo(z) *{ 0  otherwise

_ 1 if & contains “Washington”
P1(=) = { 0  otherwise

_ 1 if « contains “Bridge”
$2(z) = { 0  otherwise

b3() =

1  if & contains “General”
0  otherwise

1 if @ contains an unknown word

ba(x) = { 0  otherwise

® x=General George Washington — ¢(x) =[1 101 0]

® x=George Washington Bridge — ¢(x) =[1 11 0 0]

® x=George Washington University — ¢(x) =[1 100 1]

® x=George George George of the Jungle — ¢p(x) =[1 000 1]
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Dense Feature Representations

* ¢(z) €RP
® But ¢ is dense real valued vector, i.e., zero values not frequent
e Fg,
¢(x) = [0.123,0.439, —0.213,0.692, —0.002]
[

But where does ¢(x) come from?
® We learn it from data!

® | ong history: tf-idf, vector space models, ..., Word2Vec, Glove, ...
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Embedding / Lookup Table

00000
00000
00000

]

work —~{00000

00000

i

® Input is a word ¢(x) € RP for all x € V
® Vs a fixed vocabulary of words

® We store these in a |V| x D look up table

® These are the model word embeddings
® AKA embedding layer; word look-up table; ...
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“You shall know a word by the company it keeps”

Quick
brown
Fox

Jumps

Example from McCormick http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Source Text

fox jumps over the
The [brown[fox] junps over tne

| Thel quick-foxljumpsl over the

The[quick| brown - jumpsl over | the

Training
Samples

(the, quick)
(the, brown)

(quick, the)
(quick, brown)
(quick, fox)

(brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

(fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)
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Word2Vec

Corpus € = {X1,...,Xje(}

With sentences X = xi, ..., xx|

Vocab V = {xi|x; € X and X € C}

Goal: learn vector/embedding for all x; € V (embedding table)

word2vec (Mikolov et al. (2013))

® Define vector/embedding per word: ¢(x;)®
® word2vec optimizes (SkipGram model):

Il gl $)-x4)

ZZ > Iogp(Xl+k|X,)fZZ > logZ:eve"’(X"""’(X’)

i —c<k<c,k#0 i —c<k<c,k#0

Max:m/ze the probability word embeddmg can predict neighbours in some
context window (of size c)

SUsually two embeddings used: word and word as context. Simplified here.
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Word2Vec

Re-writing the equation:

R el 1X]

ZZ ST logett)elyd | ZZ T log 3 ett)ot)

—c<k<c,k#0 j —c<k<c,k#0 x €V

® On the left: Sum over positive contexts
® On the right: Sum over negative contexts
® Not feasible to sum over entire vocabulary

® Solution: negative sampling

el x| el 1X]

ZZ 37 logetts) et ZZ T log 3 edla)ot)

—c<k<c,k#0 Jj —c<k<c,k#0 x1€Vs

® V, is randomly sampled, i.e., Vs C 'V and |Vs| << |V| (often 1)
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Word2Vec

e] |x| el x|

ZZ Y logeft)dbind | ZZ T log Y ertoel

—c<k<c,k#0 j —c<k<c,k#0 x€Vs

® ¢(x;) are used as final word embeddings

e Usually optimized with SGD®

®Negate function to make it a loss and minimize.
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Varibable Length Inputs

® What is input « is not just a single word?
® QOr «x is not of fixed length, e.g., sentences or documents?

®*FEg,.x=x1...X

COMMON SOLUTIONS

. 1
Average: ¢(x) = Tl Y owen P(X)
® Other pointwise operations, e.g., max, sum, ...

Truncation+concatentation: ¢(x) = [¢(x1),. .., P(xk)] for a fixed k
Sparse-dense: Whole look-up table is input, but

® Zero out rows of words that are not present
® Usually not practical
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® Similarity-based Learning

Ryan McDonald Classification AthNLP 2025 77 /119



Recap: What a Linear Classifier Can Do

® |t can solve linearly separable problems (OR, AND)

OR (71, z5) AND (77, 25) AND (21, 73)

7
I~ A A ! A s O I o o,
9\l AN (a\l Ve o\l Vi
) N 8 , 8 ,
0 O\\A of,”o o 0 o 7 A
Ve
N - > s >
0 I 0 I 0 o
Z1 x1 x1
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Recap: What a Linear Classifier Do

® ... but it can’t solve non-linearly separable problems such as simple

XOR:
XOR (ZL'I, Ig)
A
I A o]
3 !
0 O A
0 o
£
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Summary: Linear Classifiers

We've seen

® Perceptron

® | ogistic regression

® QOthers: Support vector machines, LDA, ...
All lead to convex optimization problems = no issues with local
minima/initialization
All assume the features are well-engineered such that the data is nearly
linearly separable
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What If Data Are Not Linearly Separable?

Ryan McDonald Classification AthNLP 2025 81/119



What If Data Are Not Linearly Separable?

Engineer better features (often works!)
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What If Data Are Not Linearly Separable?

Engineer better features (often works!)

Similarity-based / Kernel methods:
¢ define a similarity / kernel function between points

® use it to classify new instances; need a good function
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What If Data Are Not Linearly Separable?

Engineer better features (often works!)

Similarity-based / Kernel methods:
¢ define a similarity / kernel function between points

® use it to classify new instances; need a good function

Neural networks (up next)

® embrace non-convexity and local minima
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Two Views of Machine Learning

There's two big ways of building machine learning systems:

@ Feature-based: describe objects’ properties (features) and build
models that manipulate them

® everything that we have seen so far.

® Similarity-based: don’t describe objects by their properties; rather,
build systems based on comparing objects to each other

® k-th nearest neighbors; kernel methods; Gaussian processes.

Sometimes the two are equivalent!
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Parametric vs. Non-parametric

Another way to classify machine learning systems:

@ Parametric: Fix the number of parameters, model structure and
hypothesis space

® Goal: find parameters to optimize objective in the hypothesis space
® Everything so far plus NNs

® Non-parametric: No/little assumptions about form of solution; size of
parameters not fixed

® Goal: find the function/solution to best fit data

® Similarity methods (k-th nearest neighbors); kernel methods; decision
trees, random forests, gaussian processes.
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(K-th) Nearest Neighbor Classifier

® Memorize (training) data D = {x, y: }r=1
® To classify a new datapoint @

® Find the k closest data points in the data (e.g., training set)
® Assign the most frequent class in those k points

.o o © =t
e %o ° o ° k=5
.-.‘./
° Q
° a...o e
o %o °

Ryan McDonald Classification AthNLP 2025 84 /119



(K-th) Nearest Neighbor Classifier

® We are not learning any parameters
® Hypothesis space can change by adding more data points

® Power is greater than linear classifier (xor on right)

I-NN Decision Surf ace
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Similarity Functions and Inference

® Common Similarity functions
* Euclidean: /Y ;(é(x) — &(x'))?
® Inner product: ¢(x) - d(x’)

C gl@)a)
® Cosine: 1o Te@N

® Function can also be learned!

® Searching a K-NN database
® Dense retrieval! Used in RAG, search, etc.

® Brute-force
® Branch and bound / k-d tree

® Approx: Greedy proximity graph; locality sensitive hashing
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Outline

@® Neural Networks
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Weights and biases

Linear Classifier

y' = argmax (qu)(ac)T + b) W= | wy |, b=| by
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Weights and biases

Dog

Cat

Linear Classifier

y' =argmax(Wz +b), W= | wy |, b= by,
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Linear classifiers as Matrix Multiplication

X1
Let wy = [wi, wd, wi], wo = [w?, w2, w2], w3 = [w}, w3, wj] and & = [ X2 }

X3
1 1 1
wy w, w3 Xy by
Wz +b = W12 W22 W§ X2 + | b
3 3 3 X b
wp w; w3 3 3

= (W x x1) + (W2 X x2) + (W2 X x3) by

(Wl1 ><X1)+(W21 ><x2)+(w31 X X3) by
+
(W13 ><x1)+(w§’ ><X2)+(W§’ X x3) b3

(Wll X X1)+(W21 X X2)+(W31 X x3) + b
= (W12><x1)+(w22><x2)+(W§><X3)+b2
(wf’ X x1) + (Wg’ X x2) + (Wg X x3) + b3

wi - x + by score(yi, x) »
- wy T+ by = score(yz,x) | = ¥

ws-x+ by score(ys, z) y3

90 /119
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On to neural networks!

0= ©
N ///"‘\"’0;,”/’\
N7, 055,78
& i S " '/
R “-.“\".*’o"::'.f\ ) Dog
KA ERIR: S
% > - 0} %

r,-.\-:'..::" 9= ) Cat

i
PARAPRA
"A’A\\\V&"v:\-‘.:
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Neurons, Layers and Connections

7777777777 ®

pev=r Is
s A N
| TR ﬂ"\
: %

X KL
ca] N\l
’l/f/. SR N\

\ ,,'/'/7 \ K
. &% LS N = Layer
: A 7 : :
i Ianut 57 ) % . OLUtpUt ; Connections
i Layer g SRR ayer |
i Lay A A N\ ver 5

AN D
W D EX%
LRSS

S0 4 ‘\\§ O
SR RN
15 %% *\\ 2[2’:"(‘ N «\\
VoS SN OO

W
\
N
XN e
y o\

NN
OO

! Hidden | S\ Y Neuron
i Layer | e ;

® A (dense / fully-connected) feed-forward neural network (FF-NN)
® AKA fully connected network (FCN) / multilayer perceptron (MLP)

® Input and output layers are special (more on this)
® However connections between layers take a similar form

Ryan McDonald
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Hidden Layer Connections

Inputs: h,_, Outputs: h,

Let h; € RPi be the ith hidden layer with D; dimensions/neurons
h; = 0;(W;h;_1 + b;) < weights and biases
e W, ¢ RP*Di-1 and b; € D; are layer parameters

o; is the layer’s (non-linear) activation function

Ryan McDonald
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Activation Functions

® Non-linearity by transforming/projecting the data
® Squashes output to finite range

® Examples ...

Sigmoid

10 Hyperbolic Tangent
0.5 N .
0.0 = e —€

-0 #(z) prpp

-1.0

Rectified Linear

o itz=<0
Clz ifz>0

o(z)

lorvwama

Ryan McDonald
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Output Layer

This was in the last lecture!

* y' = argmaxy; where y = Wypna1hgna1—1 + Bgnal

yi often called the logit: the raw value/score

® Training?

® Common paradigm: take softmax of logits ZL
yeE

ey
® Gives probability distribution P(y|x)
® Minimize some loss
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Example NN Loss:

® (Can use any differentiable loss function.

Let W = {(W,, b;)}, i.e., parameters for all layers i

Goal: Find W to maximize P(y|x; W) for all (z,y) € D

Cross-Entropy (CE)
® [Intuition: Avg. bits needed to distinguish two distributions

® Let P be the truth: P(y'|z;) = 1 if ¥’ = y; and 0 otherwise
* CE=—EplogP =—3% (4 en P(y|x) log P(y|z; W)
® Therefore: CE = —} ., o log P(ylz: W)

Min of CE = =3, ) log P(y|@; W) = max of 3, ) log P(y|z; W)

Cross-entropy = Maximum Likelihood / log-loss.
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Examples: NN for non-classification tasks

Regression

Scalar/Real-value

/ Loss Function

Mean-Squared Error (MSE)

Dol d

N
1 s
MSE N l§:l(yt = yi)
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Examples: NN for non-classification tasks

XX Vi

Example: Next Mouse Click

’//2/

7/,

oA Lo
7N

o’ilflz/. 2““70;7";}'£.
7 .,

Predict: x-y coordinates

Loss: Euclidean Distance
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A Wee Example

e rcR?
® h = tanh(Wz + b) with W € R3*2 and b € R3
* |Y| =2 with y = Wh + b’ with W € R?*3 and b’ € R?
® Cross-entropy:
* L(Wi(@,y)) = —log(P(y|@)) = —log =

( \ P ,
tanh( Often called ‘softmax’ layer
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Neural Networks So Far

¢ Neural network structure (FF-NN; FCN; MLP)
® Input layer: for now, assume given to us € RP
® Qutputs: y €Y

® Hidden layers: h; € RP; with h; = o;(W;h;_1 + b;)
® Thus, model parameters W = {W,, b; | Vi}
® |ncluding last output layer parameters

® Loss function: L(W;(x,vy)) — usually log-loss/cross-entropy
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Neural Networks: Optimization

Hidden layers make model non-convex!

® No single global optimum. Must settle for a local one.

® |f |oss function and activation functions are differentiable, then can be
optimized with gradient-based techniques (e.g., gradient descent)
® Gradient computation a little trickier

® Solution: backpropagation (Rumelhart et al. (1988))
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Backpropagation and the Chain Rule

® We need to compute VyyL(W; D) = [BWO, Sur el Wi €W

® For linear classifiers, W were feature weights

® For NNs, W is the set of all weights, e.g., W= {W, b, | Vi}

e Chain rule: z = g(y) and y = f(x), then % — %%
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Toy Example: Analytical Partial Derivatives

{ All base derivatives

x1 !
CoaL ,
e 2(y-y)
9y 9
o  —Y ) = (y-y) i gna Y2
oy o
aul h au2 h2
oh1_ . oh1_
x3 i 1 ow x2
4 My N
i We want i ax1 ax2
oL oL oL ol o o
x4 i oul du2 dwl dw2 ow3 w4 | oh2_ o ohl_ .
¥ ow3 owd
{ooh1_ . oh1_
ol aatW et

Full derivation examples

I
DAL oy _yiy Gl O ot aL oy on S
LAt Ty aun DAY awiTan awt T oy antowt 2V
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Toy Example: Backpropagation at Work

® Analytically computing chain rule in deep networks is onerous
® Backpropagation

® Forward pass: compute values at neurons and final loss

® Backward pass: compute % at each neuron

° % of parameter neurons form gradient
l

AL _ AL 12 geyq = ovp = L _a oy P —
Wi ™ i awi e aut =4€¥]1a:1.8 ~16 " Neuron derivatives
&2y
2
oL _ L oy
ah1 = By anhi
oL _ L oy
a2 = 3y ah2
4 oL _ L gy
aut dy aul
oL _ oL gy
au2 = oy aul
oL _ oL oht
-5 w1~ oh1owl
AL oy = L a an
ay 2(y-y)=4 2 = i s
oL _ oL oh2
w3 = on1ow3
8 Lettruey =1 $=%%
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Input layer

@ ////é’
N

\ 7

work

e Consider classifying a word in isolation with a part-of-speech tag’
® Input is a word € RP

® There is a fixed a finite vocabulary V, i.e., x €'V

"This is contrived. We usually use context.
Ryan McDonald i
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Input layer = Embedding layer

Q0000
00000
O0000

i

work —~{00000

00000

i

e Inputis a word & € RP forall z € V
® We store these in a |V| X D look up table

® These are the model word embeddings
® AKA embedding layer; word look-up table; ...
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Input layer = Embedding layer

® Static embedding layer
® Fixed word embeddings; not updated during training
® Examples: SVD; word2vec; glove; ...

® Dynamic embedding layer

® Randomly initialize word embeddings
® |earn during training of the full network
® Updated like any other layer during backpropagation

® Static + Dynamic

® |nitialize model with static embeddings; update dynamically
® Combination: part of embedding layer is static; part is learned
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Input layer

work ——

C0000
00000
C0000

0

00000

00000

:

work
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¢ Static (e.g., word2vec) or dynamic word embeddings give us input

layer

Ryan McDonald
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Dynamic Input layer

x2 L(y, y) = (y-y')?
x3
x4 {oul du2 dwl w2 ow3 dwd |

L oL oL aL

ox1 ox2 ox3 ox4

® Gradient now includes input neurons, %

® Every value in the entire lookup table is a parameter!

Ryan McDonald
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riable Length Inputs

® But what if input is a whole document and not just a single word?
e Feed-forward neural networks assume a fixed-length input, € RP
® Documents are not fixed length

OS50
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7 §w\ 7Y /"17 \

The . \
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Variable Length Inputs: Options

© Truncate document at fixed length K, x € RK*D
@ Average embeddings (below), « € RP

©® convolutional (CNNs) and recurrent neural networks (RNNs)3

/.
Y
ook s

N\
A >
S |
//

7
A 77 NEGATIVE
\‘\:‘\‘V . l//r .
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\ .
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Sl
X7 A 2 \\
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8
RNNs not covered. See https://athnlp.github.io/2024/ppts/Day02AthNLP2024~Lec2-BPlank-handout.pdf

Ryan McDonald Classification AthNLP 2025 111 /119




Convolutional Neural Networks

‘ Convolutional

Layer ‘ ‘ Pooling Layer ‘

—

was

POSITIVE
(00000 MLP
cooked () NEGATIVE

to

perfection

<eos>

padiing

filters

Waibel et al. (1989) is often cited receptive field
as earliest example of a CNN
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Convolutional Neural Networks

® Convolutional layer

® A NN sub-architecture

® Slides over input at a fixed stride, usually 1

Receptive field: fixed size input (e.g., n-gram)

Filter: MLP that creates a single vector output per position

Can be multiple filters: Almost always shared positionally; sometimes
even per layer

® Pooling layer
® Converts convolutional output to a single fixed-length vector
® Average pooling: average outputs of convolutional layers
® Max pooling: position-wise max over outputs of convolutional layers
® NN: Can also learn this, e.g., attention.

Ryan McDonald Classification AthNLP 2025 113 /119



Deep Convolutional Neural Networks

Convolutional Block
Convolutional Layer Pooling Layer
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Core Neural Network Summary

Fully-connected Feed-forward Neural Networks

Neurons, layers and connections

Output layers (linear) and losses

® Back propagation
® |nput layers

® Static vs dynamic vs mixed
® Variable length inputs: CNNs

Deep NNs — keep adding layers
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Where Does Network Structure Come From?

® Hyperparamters: input/hidden dimensions; activation functions; ...
® Usually empirical but becoming standardized (e.g., transformers)

® Deep Learning = lot’s of layers. How many? Empirical accuracy vs.
resources.

¢ Fully-connected/dense required?
® No!
Sparse layers / chunks. Especially in LLMs
But for FF-NN components usually full-connected
Any efficiency concerns lessened by modern architectures (GPU, TPU)
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Main Points (Parametric ML)
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® Sparse (binary) vs. dense (embeddings) features
® Optimization: Use gradient-based techniques
® |inear Classifiers
® Usually sparse features with block representations
® | oss functions define model
® Regularization necessary for good performance
® Sparse vs. Dense representations
® Parameteric (e.g., linear cls) vs. Non-parametric (e.g., knn) ML
® Neural Networks

® Final layer = linear classifiers

Hidden layers = linear + non-lin activation

Compute gradient with backpropagation

Input layer: static (e.g., word2vec) vs. dynamic (backprop)
(Deep) CNNs for variable length inputs
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