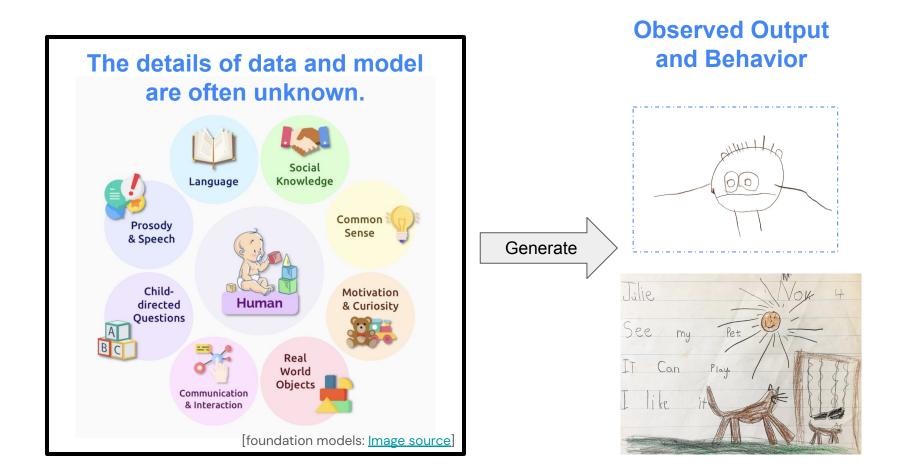
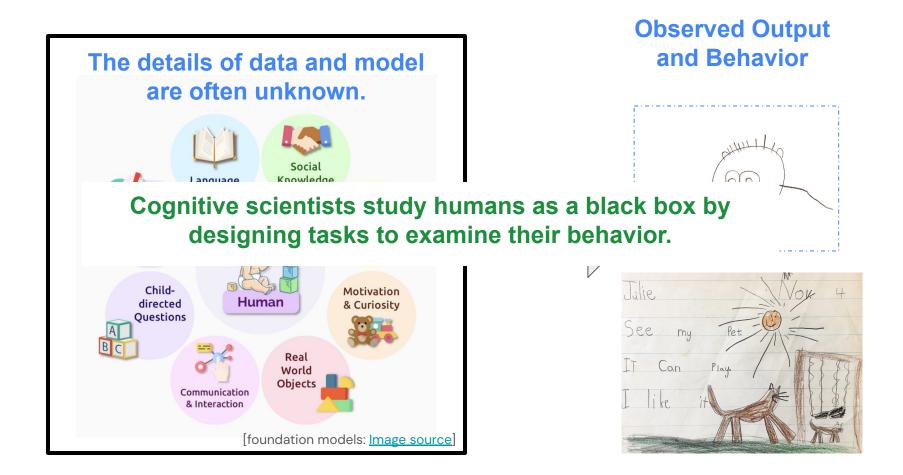

Leveraging Cognitive Science to Unravel the Complexities of Generative Models

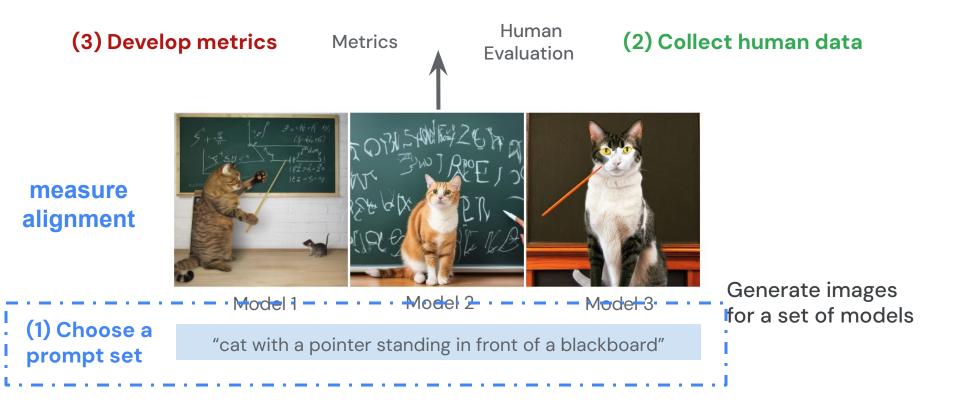

Aida Nematzadeh Google DeepMind Athens-NLP 2024


The Power of Generative Models

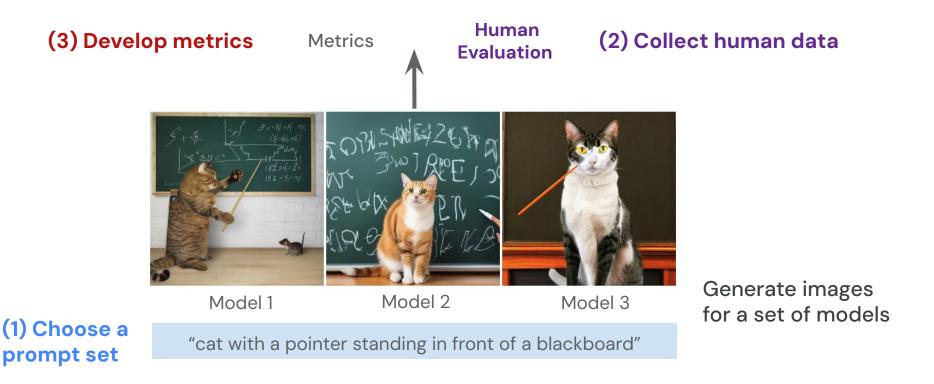
Write a poem about NLP conferences In tech halls, NLP minds unite, Sharing knowledge, a brilliant light. Neural nets and deep learning's art, Push language's boundaries apart. With posters, demos, and keynote spark, NLP's future shines, ever dark.

Lessons from Cognitive Science

Collecting human data.


Controlled study of a specific phenomenon.

Lessons from Cognitive Science

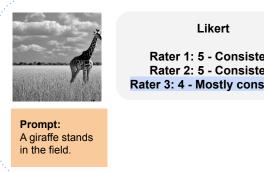

Collecting human data.

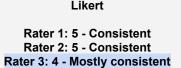
Controlled study of a specific phenomenon.

Evaluating Multimodal Generative Models [Wiles et al, 2024]

Evaluating Multimodal Generative Models

Different Ways to Collect Human Data for Alignment




Prompt: A dog is to the right of the cat.

(1) Likert 1 - <u>2</u> - 3 - 4 - 5 More consistent	(2) Word Level A dog is to the right of the cat	(3) DSG(H) Q1: Is there a dog? A: <u>Yes</u> , No Q2: Is there a cat? A: Yes, <u>No</u>
Absolute comparison	fine-grained annotations	
- 7 * * • • • • • • • • • • • • • • • • •		
(4) Preference (SxS)		
(4) Preference (SxS)		

There is no standardised way to collect human data across previous work.

Each Template Presents Its Own Challenges

Prompt: A wood carving of an owl.

DSG(H)

Q1: Is there a church? A: Yes, No Q2: Is there a wood carving? A: Yes, No Q3: Is the wood carving made of wood? A: Yes, No No question relating owl and wood carving

Prompt: A Nexus One is placed on a bench.

WL

Rater 1: A Nexus One is placed on a bench.

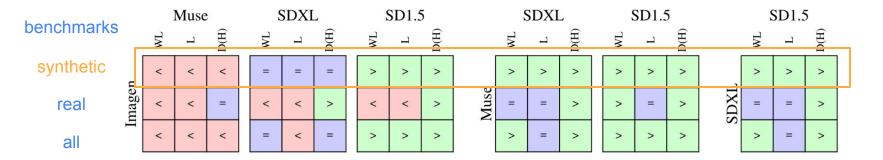
Rater 2: A Nexus One is placed on a bench.

Rater 3: A Nexus One is placed on a bench.

Raters disagree when rating words that are not relevant for the evaluation

Evaluating Human Templates: Data Quality

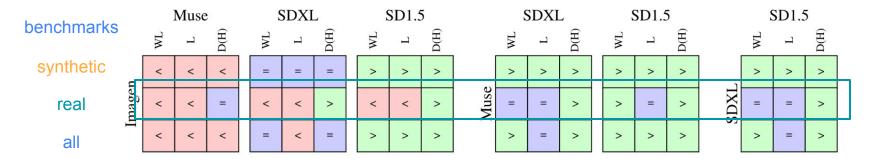
Measure the quality of the data across many conditions: compute overall inter annotator agreement with Krippendorff's α


Agreement above chance levels for most generative models.

SIS		Word-Level	DSG(H)	Likert
i models	Imagen	0.81	0.68	0.64
generation	Muse	0.82	0.72	0.78
	SDXL	0.75	0.57	0.76
image	SD1.5	0.66	0.66	0.36

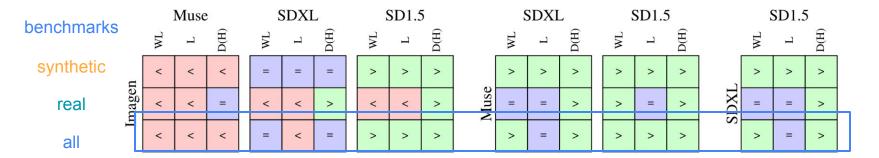
Annotators agree more when fine-grained templates are used.

Evaluating Human Templates: Model Comparisons

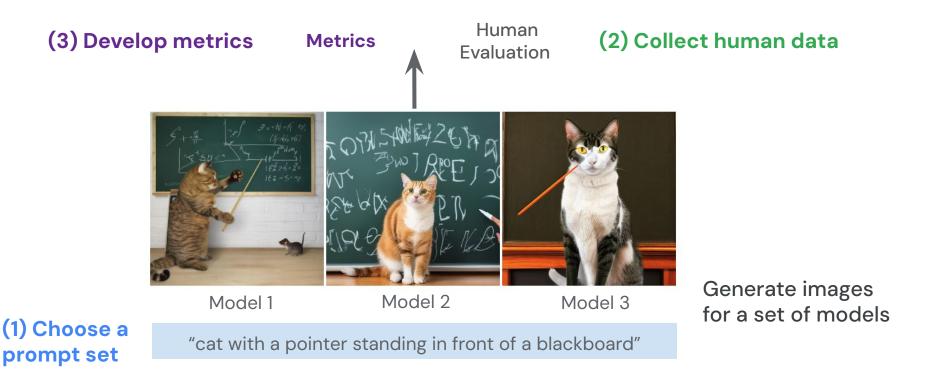

Test the statistical significance of differences in the scores for model pairs.

All templates agree on synthetic prompts.

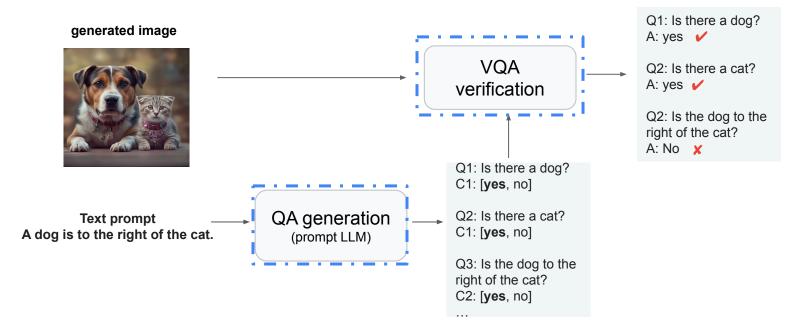
Evaluating Human Templates: Model Comparisons


Test the statistical significance of differences in the scores for model pairs.

On real prompts, fine-grained templates (word-level and Likert) agree more.


Evaluating Human Templates: Model Comparisons

Test the statistical significance of differences in the scores for model pairs.



Looking at the full dataset, fine-grained templates agree but may disagree with Likert.

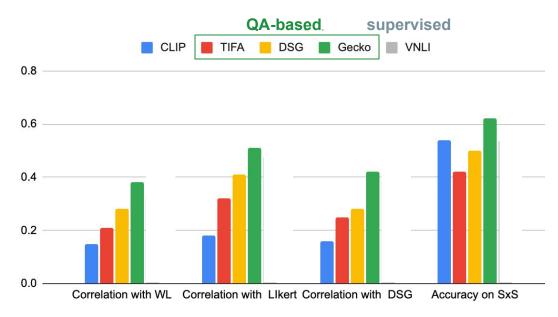
Evaluating Multimodal Generative Models

Can We Reliably Replace Human Data?



Use generative models as a proxy for humans

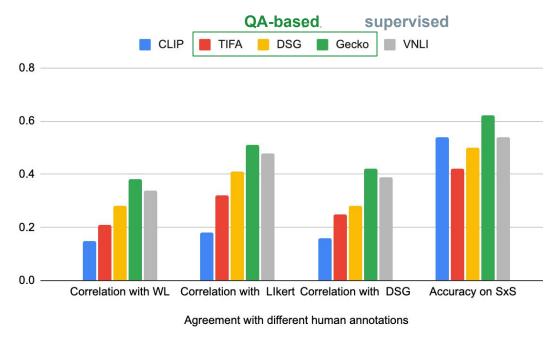
Gecko: An Automatic-Evaluation Metric for Alignment


Replace human ratings with the score obtained by our metric.

Need to validate the metric to see how well it matches the human data.

Overview of Metric

Automatic Evaluation Metrics Compared to Human Data

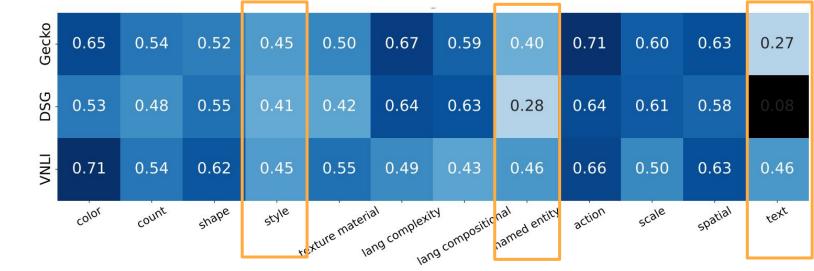


QA-based approaches outperform CLIP→ fine-grained probing improves the result.

Agreement with different human annotations

Gecko-R benchmark

Automatic Evaluation Metrics Compared to Human Data



QA-based approaches outperform CLIP→ fine-grained probing improves the result.

Gecko performs better than existing QA-based approaches and a supervised model.

Gecko-R benchmark

What Categories are Challenging for the Metrics?

Measuring text, style, & named entity is hard for QA-based metrics→ Generative models fail answering these questions.

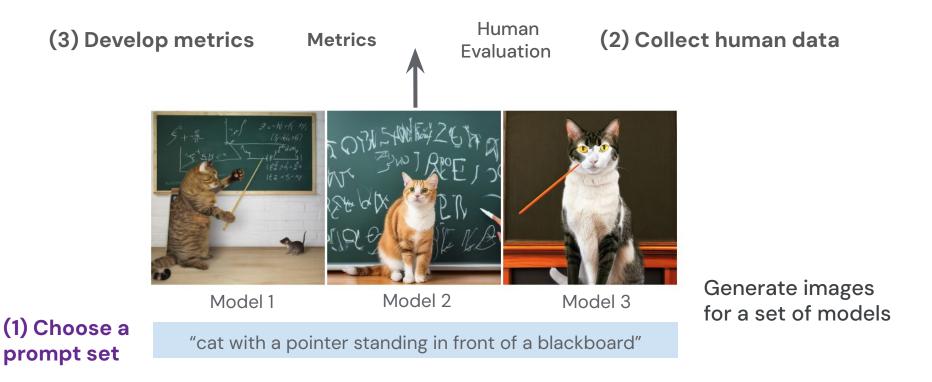
AutoEval Metrics

Lessons from Cognitive Science

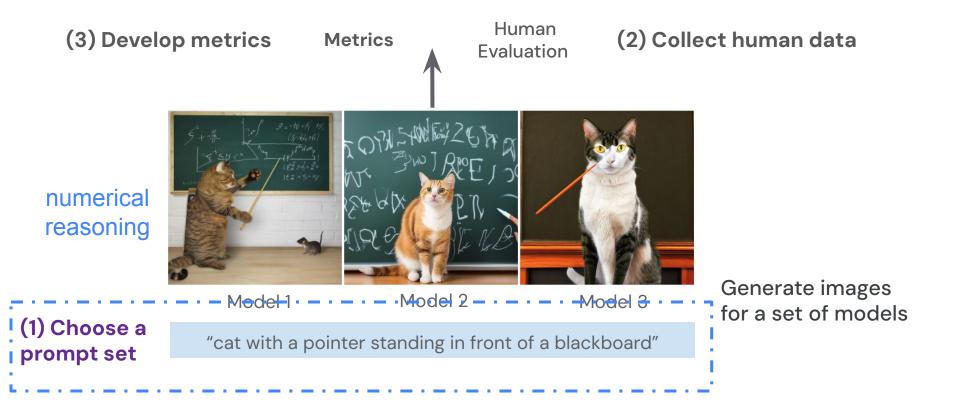
Collecting human data.

- Finer-grained templates result in higher quality data (in terms of inter-annotator agreement) and more consistent model ordering.
- Automatic evaluation can replace humans if reliable models exist.

Controlled study of a specific phenomenon.


Lessons from Cognitive Science

Collecting human data.


- Finer-grained templates result in higher quality data (in terms of inter-annotator agreement) and more consistent model ordering.
- Automatic evaluation can replace humans if reliable models exist.

Controlled study of a specific phenomenon.

Evaluating Multimodal Generative Models

Evaluating Multimodal Generative Models

Probing for Numerical Reasoning [Kajić et al, 2024]

Task 1: Exact Quantities

Generate images containing an **exact** quantity

Task 2: Approximate Quantities

Interpret **approximate** quantities expressed linguistically

Task 3: Complex Reasoning

Understand more complex numerical concepts

How to Evaluate Numerical Reasoning?

- 1. Design a set of text prompts for each of the 3 tasks
 - Task 1: Exact Number Generation
 - Task 2: Approximate Number Generation
 - Task 3: Complex Reasoning
- 2. Generate images using 7* different text-to-image models
- 3. Annotate images with counts/descriptions of objects
- 4. Use annotations to evaluate model accuracy

Creating a Controlled Prompt Set

Task 1				
Simple Numeric	{2,3}-additive	Colors	Spatial Relationships	
 3 cats. Two koalas. 7 cinnamon sticks. 1 okra. 6 paper clips. Ten flutes. 	 1 chair and 3 kangaroos. 4 coconuts and five cats. 4 corkscrews, 1 olive and 2 pistachios. 4 spoons, 4 pistachios and five parsnips. 	 Two green apples. 1 red koala and two black apples. One black mushroom and 3 black bottles. 	 There are four pistachios to the right of 4 flies. There are 2 mushrooms above 3 tables. There are two dogs below 1 tree. 	
Sentence Numeric	Task 2ApproximateQuantifiers	Task Fractional (simple, complex)	Part-whole	
 An image showing 5 mushrooms. There are 5 mushrooms. There are 5 mushrooms in this image. 	 An image with some ants and some flutes. There are fewer ants than flutes. An image of a vase. There are many flowers in the vase. An image of a vase. There are no flowers in the vase. 	 A pizza cut into 3 slices. A cake cut into quarters. An image of a pencil where one half of it is red and the other half is blue. 	 There are 2 forks on the table, but one fork is broken into two pieces. There are 4 plates on the table, but one plate is broken into two pieces. 	

Creating a Controlled Prompt Set

Task 1

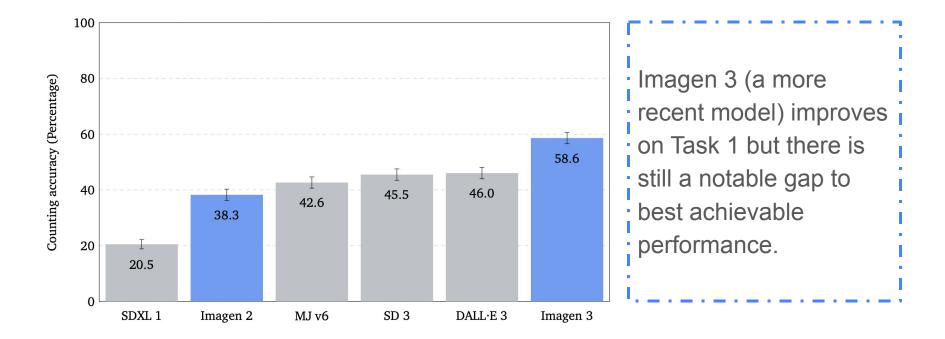
_					_
Simple Numeric					Spatial Relationships
 3 cats. Two koalas. 7 cinnamon sticks. 		1386 Prompts			
	Prompt Type	# of Prompts	Numbers	 There are four pistachios to the right of 4 flies. There are 2 mushrooms 	
1 okra.6 paper clips.Ten flutes.	Task 1	numeric-simple attribute-color numeric-sentence 2-additive 2-additive-color 3-additive attribute-spatial	600 160 100 100 100 100 100	1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1, 2, 3, 4 1, 2, 3, 4, 5 1, 2, 3, 4, 5 1, 2, 3, 4, 5 1, 2, 3, 4, 5, 6, 7, 8 1, 2, 3, 4, 5 1, 2, 3, 4, 5	 above 3 tables. There are two dogs below 1 tree.
Sentence Numeric	Task 2	approx-1-entity approx-2-entity	24 45	no, few, many fewer, as many as, more	Part-whole
 An image showing mushrooms. There are 5 mushrooms. There are 5 mushroo in this image. 	Task 3	fractional-simple part-whole fractional-complex	36 15 6	1, 2, 3, 1/2, 1/3, 1/4, 1/5 1/2 1/3 + 2/3, 1/2	 There are 2 forks on the table, but one fork is broken into two pieces. There are 4 plates on the table, but one plate is broken into two pieces.
		are no flowers in	the vase.		

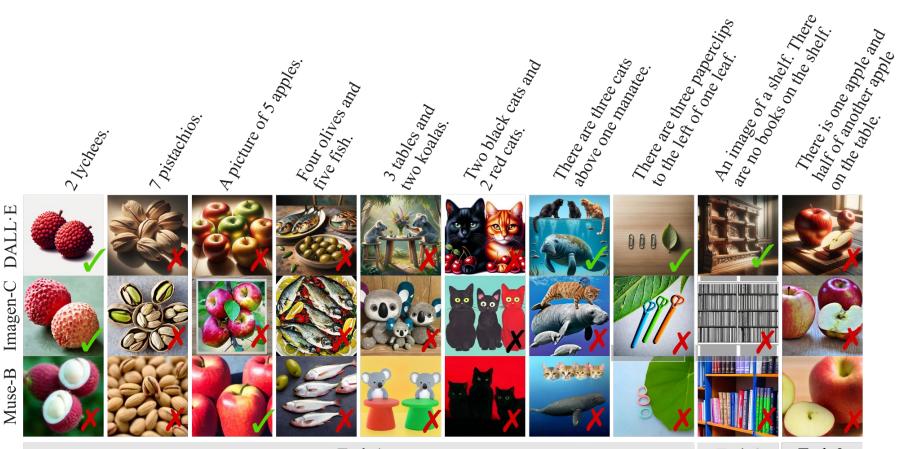
Results of Model Evaluation

	Task 1 Exact Number Generation	Task 2Approximate NumberGeneration and Zero	Task 3 Conceptual Quantitative Reasoning
DALL·E 3	$45.2 \pm 0.5 (+35.2\%)$	$48.7 \pm 2.7(+24.1\%)$	$48.8 \pm 1.1 (-1.2\%)$
Imagen-A Imagen-B Imagen-C Imagen-D	$\begin{array}{c} 26.3 \pm 0.4 (+16.3\%) \\ 27.0 \pm 0.4 (+17.0\%) \\ \underline{34.8} \pm 0.4 (+24.9\%) \\ 28.5 \pm 0.4 (+18.5\%) \end{array}$	$\begin{array}{c} 20.0 \pm 2.2 (-4.6\%) \\ 24.6 \pm 2.3 (+0.0\%) \\ 27.0 \pm 2.4 (+2.4\%) \\ \underline{28.7} \pm 2.4 (+4.0\%) \end{array}$	$\begin{array}{c} 41.1 \pm 1.3 (-8.9\%) \\ 42.9 \pm 1.4 (-7.1\%) \\ \textbf{50.6} \pm 1.2 (+0.6\%) \\ 43.8 \pm 1.3 (-6.2\%) \end{array}$
Muse-A Muse-B	$\begin{array}{c} 34.8 \pm 0.4 (+24.8\%) \\ \underline{39.8} \pm 0.5 (+29.8\%) \end{array}$	$\begin{array}{c} 21.0 \pm 2.2 (-3.6\%) \\ \underline{24.6} \pm 2.3 (+0.0\%) \end{array}$	$\begin{array}{c} 45.1 \pm 1.2 (-4.9\%) \\ \underline{46.2} \pm 1.2 (-3.8\%) \end{array}$
Random	10.0	24.6	50.0

Results of Model Evaluation

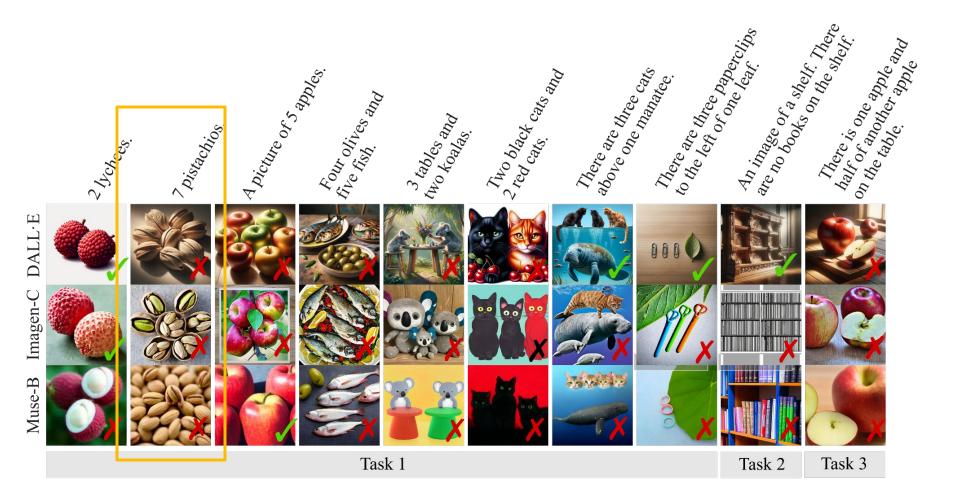
	Task 1 Exact Number Generation	Task 2Approximate NumberGeneration and Zero	Task 3 Conceptual Quantitative Reasoning
DALL·E 3	$45.2 \pm 0.5 (+35.2\%)$	$48.7 \pm 2.7 (+24.1\%)$	$\underline{48.8} \pm 1.1 (-1.2\%)$
Imagen A Imagen-B Imagen-C Imagen-D	$\begin{array}{c} 26.3 \pm 0.4 (+16.3\%) \\ 27.0 \pm 0.4 (+17.0\%) \\ \underline{34.8} \pm 0.4 (+24.9\%) \\ 28.5 \pm 0.4 (+18.5\%) \end{array}$	$\begin{array}{c} 20.0 \pm 2.2 \left(\begin{array}{c} 4.6\% \right) \\ 24.6 \pm 2.3 \left(+0.0\% \right) \\ 27.0 \pm 2.4 \left(+2.4\% \right) \\ \underline{28.7} \pm 2.4 \left(+4.0\% \right) \end{array}$	$\begin{array}{l} 41.1 \pm 1.3 (-8.9\%) \\ 42.9 \pm 1.4 (-7.1\%) \\ \textbf{50.6} \pm 1.2 (+0.6\%) \\ 43.8 \pm 1.3 (-6.2\%) \end{array}$
Muse-A Muse-B	$\begin{array}{c} 34.8 \pm 0.4 (+24.8\%) \\ \underline{39.8} \pm 0.5 (+29.8\%) \end{array}$	$\begin{array}{c} 21.0 \pm 2.2 (-3.6\%) \\ \underline{24.6} \pm 2.3 (+0.0\%) \end{array}$	$\begin{array}{c} 45.1 \pm 1.2 (-4.9\%) \\ \underline{46.2} \pm 1.2 (-3.8\%) \end{array}$
Random	10.0	24.6	50.0

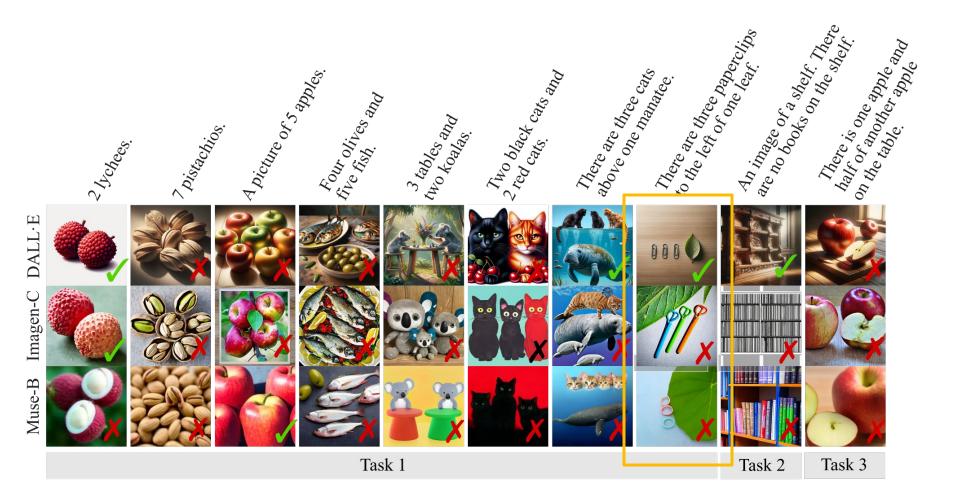

DALL.E 3 is the best performing model but there is a notable gap to best achievable performance.


Results of Model Evaluation

	Task 1 Exact Number Generation	Task 2Approximate NumberGeneration and Zero	Task 3ConceptualQuantitative Reasoning
DALL·E 3	$45.2 \pm 0.5 (+35.2\%)$	$48.7 \pm 2.7(+24.1\%)$	$\underline{48.8} \pm 1.1 (-1.2\%)$
Imagen-A Imagen-B Imagen-C Imagen-D	$\begin{array}{c} 26.3 \pm 0.4 (+16.3\%) \\ 27.0 \pm 0.4 (+17.0\%) \\ \underline{34.8} \pm 0.4 (+24.9\%) \\ 28.5 \pm 0.4 (+18.5\%) \end{array}$	$\begin{array}{c} 20.0 \pm 2.2 (-4.6\%) \\ 24.6 \pm 2.3 (+0.0\%) \\ 27.0 \pm 2.4 (+2.4\%) \\ \underline{28.7} \pm 2.4 (+4.0\%) \end{array}$	$\begin{array}{c} 41.1 \pm 1.3 (-8.9\%) \\ 42.9 \pm 1.4 (-7.1\%) \\ \textbf{50.6} \pm 1.2 (+0.6\%) \\ 43.8 \pm 1.3 (-6.2\%) \end{array}$
Muse-A Muse-B	$\begin{array}{c} 34.8 \pm 0.4 (+24.8\%) \\ \underline{39.8} \pm 0.5 (+29.8\%) \end{array}$	$\begin{array}{c} 21.0 \pm 2.2 (-3.6\%) \\ \underline{24.6} \pm 2.3 (+0.0\%) \end{array}$	$\begin{array}{c} 45.1 \pm 1.2 (-4.9\%) \\ \underline{46.2} \pm 1.2 (-3.8\%) \end{array}$
Random	10.0	24.6	50.0

Task 3 is the hardest--all models perform close to chance. Task 2 is harder than task 1.


Results of Model Evaluation [Imagen3]



Task 2 Task 3

Lessons from Cognitive Science

Collecting human data.

- Finer-grained templates result in higher quality data (in terms of inter-annotator agreement) and more consistent model ordering.
- Automatic evaluation can replace humans if reliable models exist.

Controlled study of a specific phenomenon.

• Reasoning about numbers, in particular, about approximate quantities and parts is challenging for image generation models.

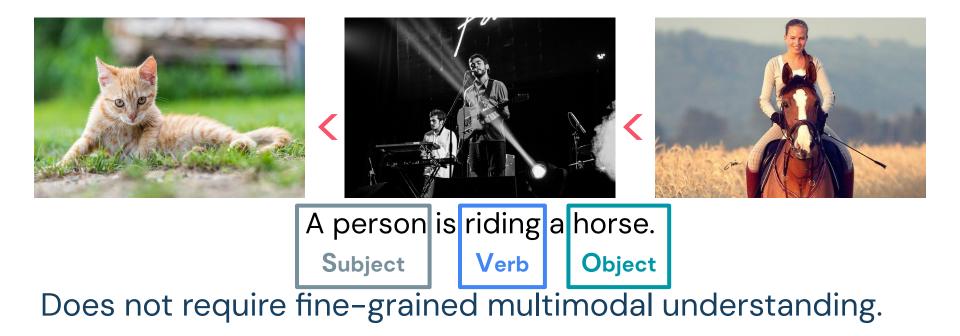
Probing Representations for Verbs

Concrete nouns are **consistent** and **easily observable**.

classification

Verbs are less so, as they capture **relations**.

structured prediction


Zero-Shot Image Retrieval

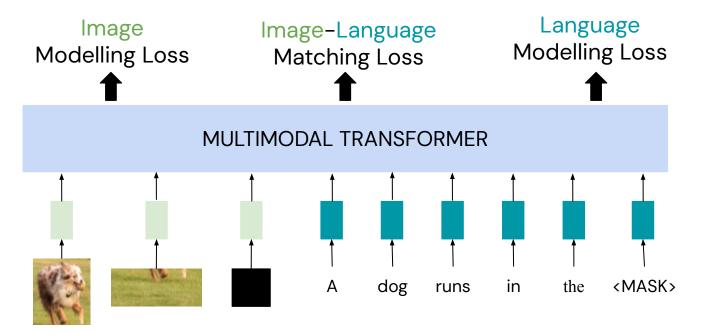
Zero-shot image retrieval directly evaluates the goodness of **pretrained** representations.

What Image Retrieval Tests

Order images with respect to their match to a sentence.

What SVO-Probes Tests [Hendricks et al., Findings of ACL 2021]

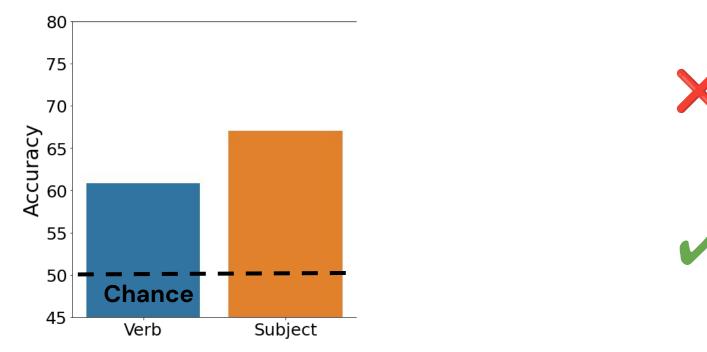
A person is **riding** a horse



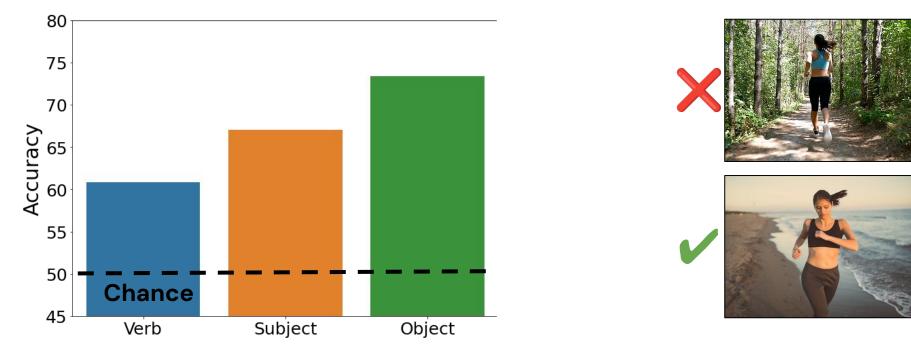
Correctly classify both the **positive** & **negative** examples.

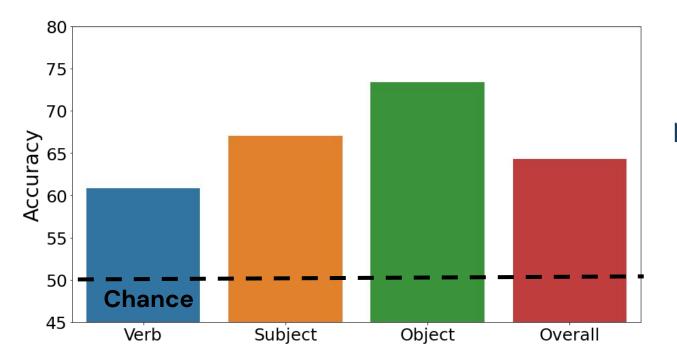
We have released our dataset! 🎉 🎉

Multimodal Transformers (MMT)



Similar architectures are widely adopted for multimodal pretraining [e.g, ViLBERT, LXMERT, UNITER].


A woman **lying** with a dog



A animal lays in the grass

A woman jogs on the **beach**

Overall MMT performance 64.3 -lots of room for improvement!

Does the Training Dataset Impact Performance?

Conceptual Captions

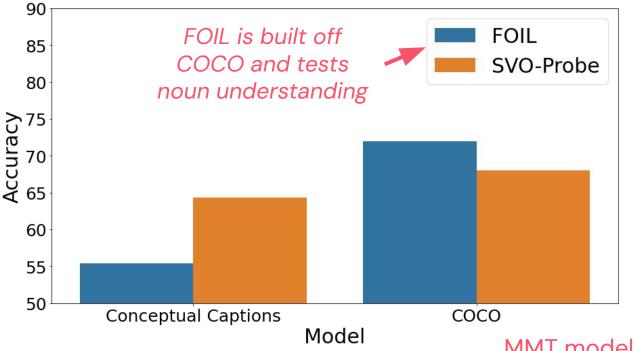
"The scenic route through mountain ranges includes these unbelievably coloured mountains.

Large (3M images) 🗸

Noisy (text might **not** describe the image)

Domain **matches** SVO-Probes 🖌

MSCOCO

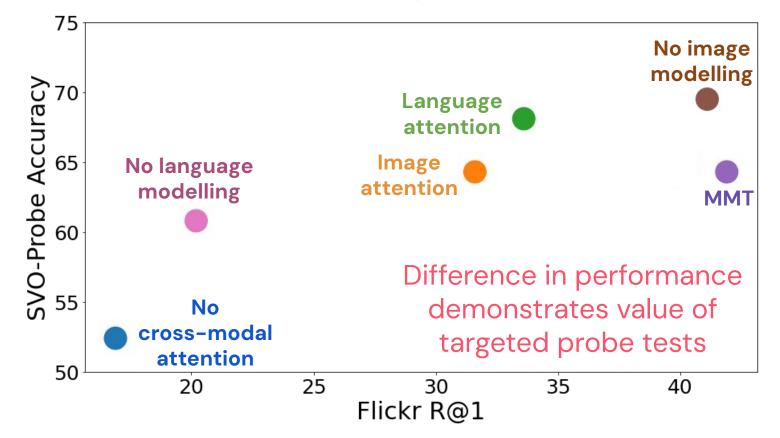

"The two people are walking down the beach."

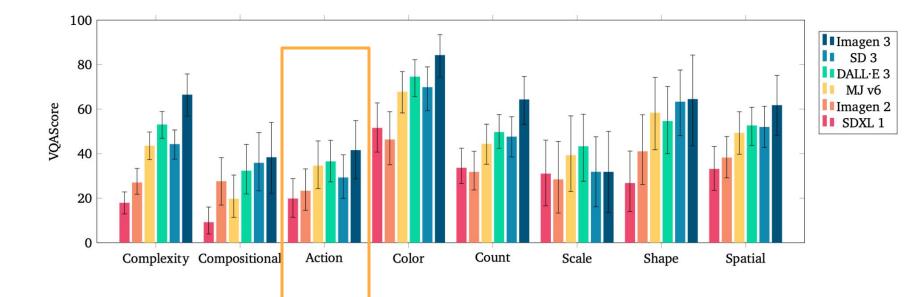
Small (100K images)

Clean (manually-annotated) 🗸

Domain mismatch from SVO-Probe

Does the Training Dataset Impact Performance?




Models trained with COCO perform better on probe datasets .

This could be because **COCO data is less noisy**, meaning images match text better.

MMT models are not robust to noise.

SVO-Probes Accuracy vs Image Retrieval [arXiv:2102.00529]

Lessons from Cognitive Science

Collecting human data.

- Finer-grained templates result in higher quality data (in terms of inter-annotator agreement) and more consistent model ordering.
- Automatic evaluation can replace humans if reliable models exist.

Controlled study of a specific phenomenon.

- Reasoning about numbers, in particular, about approximate quantities and parts is challenging for image generation models.
- Reasoning about verbs is challenging for vision-language models.

Final Thoughts

Human data is the gold-standard for evaluating generative models---the evaluation and standardisation of human data templates is important to make reliable conclusions about models.

Given the power of recent generative models, probing for specific capabilities sheds lights on their strengths and identifies their shortcoming; this in turn can guide future modeling work.

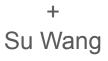
Thanks!

Lisa Anne Hendricks

Emanuele Bugliarello

Ira Ktena

Nelly Papalampidi


Jordi Pont-Tuset

Cyrus Rashtchian

