ORDER YOUR

KAWHE/COFFEE
IN MAORI

He mowai maku Il have 3 flat white
He pango poto maku Il have a short black
He pango roa maku 'll have a long black
He rate pini maku 'l have a SOy |atte
He kaputino maku Il have a cappuccino
He rate maku I'll have a latte
He tiakarete wera maku |'ll have a hot chocolate

Rahi Size

Kei te péhea koe? '
g e . . H
How's it going? Tg‘t‘é:ﬁ:,ae“?;;
Anei taku kapu mau tonu i e Ki konei
nei

Here is my reusable cup Tohave h
: ve here

1. What's the Maori word
for...

(a) “long”™?

(b) “hot”?

2. How would you order a
large cappuccino?

3. What’s the word for
chocolate?
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e |Ntro

A historical note

- Alignment and EM algorithm

e MT Evaluation

e Neural MT and LLM-based MT

e Semi-supervised and Unsupervised MT
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Machine translation

 Machine Translation (MT) is the task of translating a
sentence x from one language (the source language) to a
sentence y in another language (the target language).

X: L'homme est née libre, et partout il est dans les fers

\4

y: Man is born free, but everywhere he is in chains
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Machine Translation

* The classic test of language
understanding!

- Both language analysis & generation

 Big MT needs ... for humanity ... and
commerce

- Translation is a US$40 billion a year industry
- Huge in Europe, growing in Asia

- Large social/government/military as well as
commercial needs
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NOVUM TESTAMENTUM GRAECE

NEW
TESTAMENT




-

f " e M
E3E) K 3




HEBPIHETRRFRE S

&

B

$e

)

3 A
9 4

h

¥R

o)

| s
P
**”;

S o 8 Oo Yo Yo Yo e Yo OF Ho §e

57.

58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.

CLASSIC SOUPS Sm.
House Chicken Soup (Chicken, Celery,

Potato, Onion, Carrot) ....cceeevveeeveerineraneennrennes 1.50
Chicken Rice SouUp ....covevviiieiieiiceeieeiiieeviceeannn 1.85
Chicken Noodle Soup .....coovveviiiiiiiiiiiiiiciiininnns 1.85
Cantonese Wonton Soup......cccceevvieniiiiieiinninnnnn, 1.50
Tomato Clear Egg Drop Soup ....ccvevvieiiicivnnnnn. 1.65
Regular Wonton Soup ......ceeevveiiiiimiiiciicciiennns 1.10

28 Hot & Sour Soup ...ccoovviiiiiiiiieiieeee e, 1.10
Egg Drop Soup....cooviiiiiiiiiiiiii i 1.10
Eag Drop Wonton MiX ......cccvveiiiiiiiiiininncinnnnaene. 1.10
Tofu Vegetable Soup .....cccoovvviiiiiiiiiiiiiiiiiiicnens NA
Chicken Corn Cream Soup .....c.ovveiiiiiiiiiniiiniennn. NA
Crab Meat Corn Cream Soup.......cccevviviiiiiinnnann. NA
Seafo0d SOUP .cuueiviii i eaeraee e eans NA
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The need for Machine Translation

* Huge commercial use
- Google translates over 100 billion words a day
Facebook in 2016 rolled out new homegrown MT

- eBay uses MT to enable cross-border trade

 NMT is the flagship task for NLP Deep Learning

RNNs”? Encoder-decoder? Attention mechanism?

« NMT research has pioneered many of the recent
innovations of NLP Deep Learning
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1950s: Early Machine Translation
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Fig. 7: Flowchart of part of the dictionary lookup procedures (from Sheridan 1955)

Flow chart of the dictionary
look-up procedures (source)
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1950s: Early Machine Translation

e Machine Translation research
began in the early 1950s.
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1950s: Early Machine Translation

e Machine Translation researc
began in the early 1950s.

 Mostly Russian = English
motivated by the Cold War

- Georgetown-IBM experiment
1954

o Systems were mostly rule-
based, using a bilingual
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words to their English
counterparts
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{Initialize lst English lamsguage-block cell

{Initialize lst diacritic block cell

Initialize 1st cell of Russian input word
e

- —_—
Extraxt lst character of Inpat wmgu cell, L
setting “Thumd imdex" drum addzess, o (No) EYesﬁ]

and drem location o<p -
1 Test next input wor
cell for U

— - - -— J
[Copy Tirst cell of dictionary word and test for '+ 'k~ [(No)] l

Test mext input word
cell r 0

[Table Took wp for alpha regios index (o '“f’i

[(TE+ )

Set diacritic loop exit test
Store extracted lst character for possible right-half partial cell and ...
word look-up -

| "Copy annihilate™ to next dl:uonryl
Copy all succeeding cells of dictionary lime associated word and ...

[with successfully tested Russisnm word

1

k=th character of fmput word cell
& OUULOOL

[Tnitialize dictiomary word lst comparisos cell
anitlalxzn input wogrd lst cell

|
{Copy English No. 1, Esglish No. 2, and
(discritic associated with dictienmary

)

1
!lniu.\lue for k equal to lst character extraction and
comparison subroutine fword, storing addresses '\I' A,, in 3rd

(diacritic cell

Extract k-th character (1&k<5) of imput word cell, and |
st for U in sccumulator |

[Test whether input word was complete or
fleft-half partial (hyphen search)

it
kth character of imput word cell is not equal to OULVLOD:

— — ™
form difference between this and k-th character of dictiemary Input word was complete: modify input
word corresponding word, English block copy cell, and
giscritic block copy cell

"y
If difference equals OUO0DO00, there is charscter ugreamnl.]

——

50 modify k into k+ )

Input word was left-half partial begimning with
input word cell contaiming hyphesm: shift all re-
wainfug vells lefi, so that lat chaxovier follumimg
hyphen occupies lst character positiom. Set
|address of first cell of mext Input word

L]Tcst. is hw i lcas than vr eywal Lu Gﬁ

Nodify imput word cell address
Modify dictiomary word cell address

If difference is not equal to OUODOUD, there
245 Bo character agreement, so test k-th cha-

1
[Set last partial word cell to zerol—

k-th character of dictiomary word cell is a hyphen:
Initialize table look-up drum address and location,

acter of dictionary word cell for existence
jof hyphen

L
k=th character of dictionary word cell is mot
A hyphen: hence, there is no alphabetical
agreenent in this character position

using k-th character of isput word cell as argument.
Set addeess parts of imstructions in right-half
partial word shifting subrowtine. Store drus address
and location of Esglish No, ) (belonging to left-half
partial word) in English and discritic block copy
rostine

1
“copy annihilate™ swoceeding
of dictionmary word lime

cells Copy lst cell of mext dicticnary
{word and test for's'

I+

Test new 1st character against
15t character

—
oldl [Skip to mext dictionsry word amsd ...

Initialize partial word 1st cell

Wodify-imitialize English block copy cells

tv\o agreement)

L e
Copy Ist cell of ulclionary}'___
Modify~-initialize discritic block copy cells ftem and test for'+'
T <4\ (TR +
Copy all sweceeding cells of dictionary werd line f—— o
Inftfalize for dictionary word Ist comparison cellr ] [éhp to mext dictionacy word h—-
- QU il

Initialize for character exuacuan'_ Extract
and comparison: k equals 1

word cell and test for UULOLW

k=th character of partial k=th character is not equal
10 V000000 : compare k-th

-

P————— ——
' No agreement: "copy amnihilate” to F\quemnl:
[pext dictionary word. and . Is k+1 le

—

characters of partial word
modify k into xm—{—and dictionary word
58 tham or equal to 57

k-th character is equal to
English No. | amd English No. 2, and asso-
cisted dincritic mumbers, ¥odify English
and diacritic block copy cells and ...

fYes)
R — e
el

Modify partisl word|

5 cell and dictiomary
[operational syntax program) word cell asd ...
e — —

',

Fig. 7: Flowchart of part of the dictionary lookup procedures (from Sheridan 1955)

Flow chart of the dictionary

look-up proced

ures (source)



https://www.historyofinformation.com/detail.php?id=666

1990s-2010s: Statistical Machine
Translation
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1990s-2010s: Statistical Machine
Translation

 Core idea: Learn a probabilistic model from data

e Suppose we're translating French — English.



1990s-2010s: Statistical Machine
Translation

e Core idea: Learn a probabilistic model from data
e Suppose we're translating French — English.

* We want to find best English sentence y, given French
sentence X
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One naturally wonders 1f the
problem of translation could
concelvably be treated as a
problem 1n cryptography. When
I look at an article 1n Russian, 1
say: ‘This is really written in
English, but it has been coded
in some strange symbols. I will
now proceed to decode.’

Warren Weaver to Norbert Wiener, March, 1947



Noisy Channel MT

We want a model of p(e]|f)




Noisy Channel MT

We want a model of p(e[f)  gueenir,  -mone

/ I @
C
Confusing foreign sentence e >




Noisy Channel MT
A

/

Confusing foreign sentence

We want a model of pf

Possible English translation




Noisy Channel MT

p(f|e)

-
-~ -

decode

-
S



Noisy Channel MT
e = argmax p(e|f)

= arg max p(e) x p(fle)
S )
= arg max|p(e)| X p(ﬂ,e)

“Language Model” “Translation Model”




Noisy Channel Division of Labor

e Language model — p(e)
e is the translation fluent, grammatical, and idiomatic?
e use any model of p(e) — typically an n-gram model

e Translation model — p(f|e)
 translation probability
e ensures adequacy of translation



Translation Model

» p(f|e) gives the channel probability — the probability of
translating an English sentence into a foreign sentence

o f=je voudrais un peu de frommage

« e, = | would like some cheese
e, = | would like a little of cheese

e; = There is no train to Barcelona



Translation Model

« How do we parameterize p(f|e)?

count(f,e) P,

count(e)

p(fle) =

e There are a lot of sentences: this won’t generalize to
new inputs



Lexical Translation
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« How do we translate a word? Look it up in a dictionary!
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« Multiple translations

e Different word senses, different registers, different
inflections
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« How do we translate a word? Look it up in a dictionary!

« Multiple translations

e Different word senses, different registers, different
inflections

dare common



Lexical Translation

« How do we translate a word? Look it up in a dictionary!

« Multiple translations

e Different word senses, different registers, different
inflections

are common
is specialized (the Haus of a snail is its shell)



How common is each?

house 5000
home 2000
shell 100

household 80



MLE

pvLe(e | Haus) =

0.696
0.279
0.014
0.011

if e = house

if e = home

if e = shell

if e = household

otherwise



Lexical Translation
e Goal: a model p(e|f, m)

 where e and f are complete English and Foreign
sentences
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e Goal: a model p(e|f, m)

 where e and f are complete English and Foreign
senteinces

€ = (€1,€2,...,Em)



Lexical Translation
e Goal: a model p(e|f, m)

 where e and f are complete English and Foreign
senteinces

e — <617627"'76m> f: <.f17f23"'7fn>
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Lexical Translation

e Goal: a model p(e|f, m)
« where e and f are complete English and Foreign sentences

e Lexical translation makes the following assumptions:
« Each word e, in e is generated from exactly one word in f
« Thus, we have a latent alignment a. that indicates which word e
“came from.” Specifically it came from f,..

e Given the alignments a, translation decisions are conditionally
independent of each other and depend only on the aligned source

word f,..



Lexical Translation

e Putting our assumptions together, we have:

ple|f,m) = Z p(a | f,m) ><1_[pez\fan

ac|0,n|™

p( ) p(Translation |



What is alignment?

e Alignment is the correspondence between particular
words in the translated sentence pair.

purious J - 2 > GEJ
word Q S X 3 ®
OO © O ® O O O
Le - D »n QO T C w
Japan —— Japon
shaken —— secoué
by —— par
two —— deux
new —— nouveaux
quakes —— séismes




Alignment
pla|f,m)

e Most of the action for the first 10 years of MT was
here. Words weren’t the problem. Word order was

hard.



Alignment

e Alignments can be visualized by drawing links between
two sentences, and they are represented as vectors of
positions: 1 , . .

das Haus st klein

the house Is small
1 2 3 4

a=(1,2,3,4)"



Reordering

 Words may be reordered during translation

1 2 3 4
klein ist das Haus

S

the house is small
1 2 3 4

a=(3,421)"



Word Dropping

e A source word may not be translated at all

das Haus |st klem

[/ /

house i smaII

a=(23,4)"



Word Insertion

 Words may be inserted during translation
e E.g. English just does not have an equivalent

e But these words must be explained — we typically assume
every source sentence contains a NULL token

NULL das Haus |st klem

\I\I\L\

the house IS jUS'[ smaII

a=(1,2,3,0,4)"



One-to-many Translation

e A source word may translate into more than one

target word
1

das Haus |st klltzekleln

/\

the house s very smaII
1 2

a=(1,2,3,4,4)"



Many-to-one Translation

e More than one source word may not translate as a unit

in lexical translation

1 2 3 4
das Haus brach zusammen

N\ N

the house collapsed
1 2 3

a="777 a=(1,2,(3,4)")" ?



IBM Model 1

e Simplest possible lexical translation model

» Additional assumptions:
« The m alignment decisions are independent

« The alignment distribution for each a; is uniform over all
source words and NULL

for each 7 € [1,2,...,m]
a; ~ Uniform(0,1,2,...,n)
e; ~ Categorical(@y, )



Translating with Model 1

0 1 2 3 4
NULL das Haus st klein




Translating with Model 1

0 1 2 3 4
NULL das Haus Ist klein

the house IS small
1 2 3 4

Language model says: ©



Translating with Model 1

0 | 2 3 4
NULL das Haus ist klein

house IS small the

| 2 3 4

Language model says: ®



Learning Lexical Translation Models
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Learning Lexical Translation Models

« How do we learn the parameters p(e|f)?

e “Chicken and egg” problem

 |If we had the alighments, we could estimate the translation
orobabilities (MLE estimation)

 |If we had the translation probabilities we could find the most
ikelv alignments (greedy)
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EM Algorithm

e Pick some random (or uniform) starting parameters

o Repeat until bored (~5 iterations for lexical translation models):

o Using the current parameters, compute “expected” alignments p(a|e,
f) for every target word token in the training data

o Keep track of the expected number of times f translates into e
throughout the whole corpus

o Keep track of the number of times fis used in the source of any
translation

o Use these estimates in the standard MLE equation to get a better set
of parameters



EM for Model 1

la maison ... la maison blue ... la fleur

the house ... the blue house ... the flower
e Initial step: all alignments equally likely

e Model learns that, e.g., la is often aligned with the
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the house ... the blue house ... the flower
e After one iteration

e Alignments, e.g., between la and the are more likely



EM for Model 1

. la maison ... la maison bleu ... la fleur
the house ... the blue house ... the flower

e After another iteration

e |t becomes apparent that alignments, e.g., between fleur and flower are more
likely (pigeon hole principle)



EM for Model 1

la maison ... la maison bleu ... la fleur

[ X ||

the house ... the blue house ... the flower

Y

p(lalthe) 0.453

p(le]|the) 0.334

p (maison|house) = 0.876
p(bleu|blue) = 0.563

e Parameter estimation from the aligned corpus
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Convergence

das Haus

.- e

L
"
0..

das Bu_ch

‘e

ein Buch

L 2
0.0

A4 -
0...

- -
"’

the house a (0]0].4

2 f initial | Ist it. | 2nd it. | 3rd it. final
the das 0.25 0.5 0.6364 | 0.7479 1
book | das 0.25 0.25 | 0.1818 | 0.1208 0
house | das 0.25 0.25 | 0.1818 | 0.1313 0
the | buch || 0.25 0.25 | 0.1818 | 0.1208 0
book | buch | 0.25 0.5 0.6364 | 0.7479 1
a buch || 0.25 0.25 | 0.1818 | 0.1313 0
book | ein 0.25 0.5 0.4286 | 0.3466 0
a ein 0.25 0.5 0.5714 | 0.6534 1
the haus | 0.25 0.5 0.4286 | 0.3466 0
house | haus | 0.25 0.5 0.5714 | 0.6534 1




From words to
phrases



Word Alignment o QY

& c -

- +— o (7)) wn O

o L > o0 (7)) - q—)

é () (4v] ] (4] — E c X

O O (4y] -~ O (b] = C O
michael
assumes
that
he
will
stay
in
the
house

Philipp Koehn Machine Translation: Phrase-Based Models 10 September 2024



Extracting Phrase Pairs 14

& c -

- +— o (V)] wn O

o L > o (7)) - q—)

é () (4v] -] (qv] — E c X

O O © ~ O (b] = C O
michael
assumes
that
he
will
stay
in
the
house

extract phrase pair consistent with word alignment:

assumes that / geht davon aus, dass

Philipp Koehn Machine Translation: Phrase-Based Models 10 September 2024



Consistent 16 QY

| 1 |
consistent 1inconsistent consistent

Phrase pair (¢, f) consistent with an alignment A, if all words fi, ..., f,, in f that
have alignment points in A have these with words ey, ..., ¢,, in € and vice versa:

(e, f) consistent with A <
Ve;ce: (e, fi)EA—fief
ANDVYf; € f:(e;fj) EA—e €€
AND Je; €€, f; € f: (e, fj) €A

Philipp Koehn Machine Translation: Phrase-Based Models 10 September 2024



Phrase Pair Extraction

[0}

© c —
[ el (@) ()] N O
o L > wn wn > G_J
E o o© © T © &£ £ 0o

michael
assumes
that

he

will

stay

in
the
house

Smallest phrase pairs:
michael — michael
assumes — geht davon aus / geht davon aus,
that — dass / , dass
he —er
will stay — bleibt
in the — im
house — haus

unaligned words (here: German comma) lead to multiple translations

Philipp Koehn

Machine Translation: Phrase-Based Models

10 September 2024



Larger Phrase Pairs 18

michael
geht
davon
aus
dass
er

im
haus
bleibt

michael

assumes

that

: "

will

stay

in
the
house

michael assumes — michael geht davon aus / michael geht davon aus,
assumes that — geht davon aus, dass ; assumes that he — geht davon aus, dass er
thathe — dasser / ,dasser ; in the house — im haus
michael assumes that — michael geht davon aus, dass
michael assumes that he — michael geht davon aus, dass er
michael assumes that he will stay in the house — michael geht davon aus, dass er im haus bleibt
assumes that he will stay in the house — geht davon aus, dass er im haus bleibt
that he will stay in the house — dass er im haus bleibt ; dass er im haus bleibt,
he will stay in the house — er im haus bleibt ; will stay in the house — im haus bleibt

Philipp Koehn Machine Translation: Phrase-Based Models 10 September 2024



Extensions

e Phrase-based MT:

e Allow multiple words to translate as chunks (including
many-to-one)

e Introduce another latent variable, the source

segmentation
Maria no dio una bofetada a |Ia erJa verde

7 T 3 Y

oo
m“
e




Another Paradigm: Syntax-Based MT

e Syntactic structure

e Rules of the form:

e XZ— = one of the X

NP VP |

NP s NP PP



2014

(dramatic reenactment)






What is Neural Machine Translation?

e Neural Machine Translation (NMT) is a way to do
Machine Translation with a single neural network

 The neural network architecture is called sequence-to-
sequence (aka seg2seq) and it involves two RNNs.



Conditional Language
Models

J
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Conditional Language
Models

J
PY|X) =[Pl | X0, y5-1)

j=1 T

Added Context!



one Type oy CONditional Language Model
(Sutskever et al. 2014)

Kono e/ga k/ra/ < /s>
¢
DHDD 'XIX] 'XIX] 'XIX] 'XXX]
< < < < > <
@ LSTI\/I ’ LSTI\/I ’ LSTI\/I

hate thls mowe

'XIX] 'XIX] 'XIX]
LSTI\/I " LSTI\/I "
argmax argmax argmax argmax argmax
v v

| hate this movie </s>



one Type oy CONditional Language Model

(Sutskever et al. 2014)
Encoder

kono e/ga k/ra/ < /s>

GO 'XIX] 'XIX] 'XIX] 'XXX]
| 8 3 *: *: ::
.. @— LST™ LSTI\/I ; LSTI\/I g LSTI\/I

hate this movie

'XIX] 'XIX] 'XIX]
LSTI\/I " LSTI\/I "

argmax argmax argmax argmax argmax
v v

| hate this movie </s>




©one Type o) CONditional Language Model
(Sutskever et al. 2014)

Encoder_x , L
kono e/ga k/ra/ </s>

GO 'XXX] 'XXX] 'XXX] 'KIX]
| 8 3 *: *: ::
@— LST™ LSTI\/I ; LSTI\/I g LSTI\/I

'XXX] 'XXX] 'XXX]
LSTI\/I " LSTI\/I "

4 argmax argmax argmax argmax argmax
v v

| hate this movie </s> ;_»

Decoder



Encoder RNN

Neural Machine Translation (NMT)

The sequence-to-sequence model
Target sentence (output)

Encoding of the source sentence. A

4 \
Provides initial hidden state
the oor don’t have any money <END>
for Decoder RNN. P y y

\ ]|

NNY J9p0o2aQ

©
SISl S s e
O @) @)
< o "le[ e[ |e@ oo le[ 7lo[ Tlo[ |0 1o -
O O @ @ o) O @) O O O @)
~ J
les pauvres sont démunis <START> the poor don’t have any money
_ )
Y
Source sentence (input) Decoder RNN is a Language Model that generates

target sentence conditioned on encoding.

Encoder RNN produces
an encoding of the
source sentence.




Encoder RNN

Neural Machine Translation (NMT)

= negative log = negative log = negative log
1 T prob of “the” prob of “have” prob of <END>
J=:)0 = [ hl+ ko g s e s o+ g 4
R T T T T T T T
Vi V2 Y3 Va Vs Ve V7
sl 3| (s [el (sl fe1 fe] fe] fe1 fe1 8
@) (@) O
e |e[ "le| @ ol lo[lo o o[ lo[ |0
o] O O O O O O @) O O O
les pauvres sont démunis <START> the poor don’t have any money
N J J
Y Y
Source sentence (from corpus) Target sentence (from corpus)

Seg2seq is optimized as a single system.
Backpropagation operates “end to end”.

NNY 19Pp03a(
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Advantages of NMT

« Compared to SMT, NMT has many advantages:
« Better performance
e More fluent
» Better use of context
e Better use of phrase similarities
e A single neural network to be optimized end-to-end
e No subcomponents to be individually optimized
e Requires much less human engineering effort
e No feature engineering

« Same method for all language pairs
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Disadvantages of NMT?

Compared to SMT:

« NMT is less interpretable
e Hard to debug

« NMT is difficult to control

» For example, can’t easily specify rules or guidelines for
translation

» Safety concerns!



Generation

Can we find the best (most likely) translation?



Generation through
Sampling

No but we can approximate it!



Generating New Sentences



Generating New Sentences

e (Generate sentences:

while didn't choose end-of-sentence symbol:
calculate probability of

P(x [xy,...,x,_1)



Greedy Decoding

e (Generate next word conditioned on the context
(i.e., the previously generated words)

e “Greedy”: always pick the most probable next word
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Greedy Decoding

e (Generate next word conditioned on the context
(i.e., the previously generated words)

e “Greedy”: always pick the most probable next word
x, = argmax P(X|xy,...,x,_1)
* Problem:

- The most probable next word does not always

lead to the most probable sentence;

- We should be able to generate a diverse set of
sentences!



Beam Search

 Beam search: instead of picking one high-
probability word, maintain several paths



Beam Search

 Beam search: instead of picking one high-
probability vvord maintain several paths

2.95
Y 101, 127
0.27+, s>

<S>




Beam Search



vou
cat

movie
this

0.001
0.0002
0.12
0.04
0.0004
0.01
0.02

Beam Search



§—> <S>

a 0.001
the 0.0002

| 012+
Vou 0.04~—
cat 0.0004

movie 0.01
this 0.02

Beam Search

K=2



Beam Search

K=2

a ooo1\§* You

the 0.0002

| 012+
Vou 0.04~—
cat 0.0004

movie 0.01
this 0.02



Beam Search

score=0.12
i—» <S> —’i—’ |
score=0.04
a 0.001 o You
the 0.0002
I 0.12<—
vou 0.04—
cat 0.0004

movie 0.01
this 0.02



Beam Search

k=2 Expand

score=0.12
i—» <S> —’i—’ |
score=0.04
a 0.001 o You
the 0.0002
I 0.12<—
vou 0.04—
cat 0.0004

movie 0.01
this 0.02



Beam Search

k=2 Expand

a 0.001
the 0.0002
hate 05
this 0.001
cat 0.003

movie 0.07
don’t 0.3

score=0.04
—- You



Beam Search

k=2 Expand

a 0.001
score=0.06 the 0.0002
§_> hate hate 05 “—
. this 0.001
score=0.036 cat 0.003
i-» don’t movie 0.07

don'’t 03 “
score=0.04

—- You



i—» <S>

Beam Search

K=2

score=0.12

o

___4§*|
\ score=0.04 |

\i—b You

—

Expand

score=0.06

i—» hate

score=0.036

i—» don'’t

an
be
hate
these
doa
movie
like

0.0012
0.0002

0.5
0.001
0.003

0.07

0.3

<4—

<4



Beam Search

k=2 Expand

score=0.06
score=0.12 §—> hate

i"’ <S> ;" | score=0.036

i—» don'’t

score=0.020

i—» hate

score=0.04 |

score=0.012

i-» Like

an
be
hate
these
doa
movie
like

0.0012
0.0002

0.5
0.001
0.003

0.07

0.3

<4—

<4



Beam Search

k=2 Expand

score=0.06
score=0.12 §—> hate

i"’ <S> i"’ | score=0.036

\4§—> You
—

i—» don'’t

score=0.020

!—» hate

score=0.04 |

score=0.012

i-» Like

Prune

an
be
hate
these
doa
movie
like

0.0012
0.0002

0.5
0.001
0.003

0.07

0.3

<4—

<4



Beam Search

k=2 Expand

score=0.06
‘score=0.12 !—' hate

i"’ <S> !"’ | score=0.036

i—» don'’t

score=0.020
!* h
score=z0.0
!—> Li

score=0.04 |

Prune

an
be
hate
these
doa
movie
like

0.0012
0.0002

0.5
0.001
0.003

0.07

0.3

<4—

<4



Beam Search

k=2 EXpaﬂd score=0.003

_score= 0.06

score=0.1e score=0.002

- @<core 0.036
m score 0.0024

& Ike
scorez0.020 '

score 0.0008
core:O 05:2

core=0.04 |

\ You

Care




Beam Search

k:2 EXpaﬂd Core 0.003
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score=0.12
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Evaluation



Machine ITranslation
(reference based)

Mi piacerebbe un

, | like one cold cappuccino.
cappuccino freddo.
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Machine ITranslation
(reference based)

Mi piacerebbe un

, | like one cold cappuccino.
cappuccino freddo.

reference: | would like a cold cappuccino.

Compare the output with the reference!
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How do we evaluate MT7

BLEU (Bilingual Evaluation Understudy)

« BLEU compares the machine-written translation to one or
several human-written translation(s), and computes a
similarity score based on:

e n-gram precision (usually up to 3 or 4-grams)
e Penalty for too-short system translations
e BLEU is useful but imperfect
e There are many valid ways to translate a sentence

e So a good translation can get a poor BLEU score because
it has low n-gram overlap with the human translation &
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Machine Translation: BLEU

reference: | would like a cold cappuccino

hypothesis: | like one cold cappuccino

Unigrams 4/5
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— average
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Machine Translation: BLEU

reference: | would like a cold cappuccino

hypothesis: | like like like like one cold cappuccino

Unigrams 7/8
Bigrams 1/7
3-grams 0/6
4-grams 0/5

Can we cheat?

Solution: Only count each word once.



Machine Translation: BLEU

reference: | would like a cold cappuccino

hypothesis: | would like

Unigrams 3/3
Bigrams 2/2
3-grams 1/1
4-grams —

Can we cheat?

Solution: Brevity Penalty.



MT: Problems with BLEU

reference: | would like a cold cappuccino

hypothesis 1: | would like one cold cappuccino

These three hypotheses have the same BLEU score!

Solution: Use paraphrases, synonyms, etc (Meteor)



MT: Problems with BLEU

reference: | would like a cold cappuccino
hypothesis 1: | would like one cold cappuccino

hypothesis 2: | would like a cold espresso

These three hypotheses have the same BLEU score!

Solution: Use paraphrases, synonyms, etc (Meteor)



MT: Problems with BLEU

reference: | would like a cold cappuccino
hypothesis 1: | would like one cold cappuccino
hypothesis 2: | would like a cold espresso

hypothesis 3: | would like a cold monk

These three hypotheses have the same BLEU score!

Solution: Use paraphrases, synonyms, etc (Meteor)



MT: Problems with BLEU

source: behaving as Iif you are among those whom we could not civilize

reference: uygarlatiramadiklarimizdanmi ssinizcasina

Languages with Rich Morphology: How dow we even evaluate this?

Solution: Use subwords, character-Fscore — chrF



MT: Human Evaluation

It is almost always better to ask humans!
e.g. in MT, we ask translators

Way 1: Way 2:
We show system outputs to We show 2 system outputs to
the annotators, and they provide the annotators, and they annotate
a score (e.g. 1-5 Likert scale, which one of the two they think is

or 0-100 score) better.



Evaluation of Evaluation Metrics 29

q

e Automatic metrics are low cost, tunable, consistent
e But are they correct?

— Yes, if they correlate with human judgement

Philipp Koehn Machine Translation: Evaluation 17 September 2024



Evidence of Shortcomings of Automatic Metri@s

Post-edited output vs. statistical systems (NIST 2005)

Human Score

4

3.5 r

25 r

Adeduacy K
Correlation -------==---

-
=
-
-
L
-
Clae
-------
-
-
"
=
-
-
-

0.4 0.42 0.44 0.46 0.48 0.5
Bleu Score

0.52

Philipp Koehn

Machine Translation: Evaluation

17 September 2024



Evidence of Shortcomings of Automatic Metri@s

Human Score

Rule-based vs. statistical systems

4.5

3.5 r

*

Adequécy 2
Fluency @

L 4
SMT System 1 g
Rule-based System
(Systran)

L 4
SMT System 2

0.2 0.22 0.24 0.26 0.28 0.3
Bleu Score

Philipp Koehn

Machine Translation: Evaluation

17 September 2024



WMT Metrics Shared Task

e Annual event to evaluate metrics

e Piggy-backs on the WMT General Translation Task

— new test set every year

— research systems and commercial systems
— lately also large language models
— human evaluation of automatic evaluations

e New metrics proposed

e Evaluation by correlation with human judgments

(WMT 2023)

35

Metric | avg corr
XCOMET-Ensemble 1 0.825
XCOMET-QE-Ensemble* 2 0.808
MetricX-23 2 0.808
GEMBA-MQM* 2 0.802
MetricX-23-QE* 2 0.800
mbr-metricx-qe* 3 0.788
MaTESe 3 0.782
CometKiwi* 3 0.782
COMET 3 0.779
BLEURT-20 3 0.776
KG-BERTScore* 3 0.774
sescoreX 3 0.772
cometoid22-wmt22* 4 0.772
docWMT22CometDA 4 0.768
docWMT22CometKiwiDA* | 4 0.767
Calibri-COMET22 4 0.767
Calibri-COMET22-QE* 4 0.755
YiSi-1 4 0.754
MS-COMET-QE-22* 5 0.744
prismRef 5 0.744
mre-score-labse-regular 5 0.743
BERTSscore 5 0.742
XLsim 6 0.719
f200spBLEU 7 0.704
MEE4 7 0.704
tokengram_F 7 0.703
embed_llama 7 0.701
BLEU 7 0.696
chrF 7 0.694
eBLEU 7 0.692
Random-sysname* 8 0.529
prismSrc* 9 0.455

Philipp Koehn

Machine Translation: Evaluation

17 September 2024



=

Trained Metrics: COMET 3 GV

e Two decades of evaluation campaigns for machine translation metrics
— a lot of human judgment data

e Goal: automatic metric that correlates with human judgment

e Make it a machine learning problem

— input: machine translation, reference translation
— output: human annotation score

e COMET: Trained neural model for evaluation

Philipp Koehn Machine Translation: Evaluation 17 September 2024



Reference-Free Evaluation 37

e We have data in the form
input, translation, human reference — human judgment
e We can also train a model on
input, translation — human judgment
e CometKiwi: trained evaluation model without references

e Also called quality estimation or confidence estimation

Philipp Koehn Machine Translation: Evaluation 17 September 2024



Semisupervised and
Unsupervised Methods
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MT ef
Parallel m‘_—‘ Train NMT

LM+

Monolingual Train LM

Combine the two!
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Back-translation (Sennrich

et al. 2016)
Train French->English
Parallel
Back-Iranslate
Monolingual data
Monolingual -

Train English->French




Dual Learning
(He et al. 20106)
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(He et al. 20106)

Assume MTer, M Tre, LMe, LM

MTef Game:
Parallel SIS VTre IRELUEES Tronsiate sample with MTe

Get reward with LM

| Me LM+

Monolingual

Translate sample with M T+
Get reward with LM




Semi-Supervised Learning for MT
(Cheng et al. 2016)
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Semi-Supervised Learning for MT
(Cheng et al. 2016)
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MT ef
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Semi-Supervised Learning for MT
(Cheng et al. 2016)

Round-trip translation for

supervision
MT ef

Parallel SICLEUE T BRGUES  Tronsiate e to £ with MTe

Translate f'to e’ with M T+

MT ef

. oss from e and &’

Monolingual

EngliSh FrenCh bushi yu shalong juxing le huitan x/
decoder ﬁ P(X’|y; 0)

Bush held a talk with Sharon y

encoder ﬁ P(ylx; ﬁ)

bushi yu shalong juxing le huitan X




Another idea: use monolingual data
to pretrain model components
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Another idea: use monolingual data
to pretrain model components

Use the monolingual data
to train the encoder
and the decoder.

H% :

Parallel

Monolingual



Another idea: use monolingual data
to pretrain model components

Softmax

Second RNN Layer

First RNN Layer

Embedding

A B C <EOS> ' X Y Z

Shaded regions are pre-trained

From "Unsupervised Pretraining for Sequence to Sequence Learning’, Ramachadran et al. 2017.



Another idea: use monolingual data
to pretrain model components

B33 38
t 1 1t 1
Encoder Attention Decoder
t ¢+ ¢t t t 1t t 1 r 1t 1T 1t 1t T 1
2] B (0 (8] () (2] Bl () ([ OO (79 [ 79 (579 [ e

Figure 1. The encoder-decoder framework for our proposed MASS. The token “_” represents the mask symbol [M]

From "MASS: Masked Sequence to Sequence Pre-training for Language Generation®', Song et al. 2019.



Another idea: use monolingual data
to pretrain model components

[ Encoder ]——> Attention ——*[ Decoder

t ¢+ ¢t t t t 1t 1 tr .t 1t 1T 1t 1 1
x: ) (0 ) 0 ) ) L) (%) (%) (%6 (000 0 [ | 0 [ | O O [
(a) Masked language modeling in BERT (k = 1)

EN Y N ER T ENEIEY
r T T °T T T T 1
Encoder Attention Decoder
t t+ t t t t 1 1 r 1 T 1T 1T 1 1
0] O | S0 G | S | SR B | 5 I EN(EY Y (EN ERES £

(b) Standard language modeling (kK = m)

From "MASS: Masked Sequence to Sequence Pre-training for Language Generation®', Song et al. 2019.



Another idea: use monolingual data
to pretrain model components

BLEU
BLEU
BLEU
BLEU
BLEU

30| - Baseline | mmm Baseline N Baseline N Baseline I Baseline 30 BN Baseline
. MASS . MASS 20 wmm Mass . MASS 20| mmm MASS . MASS
20 o) 20|
&l
@101 10
) J J ) J
0 0
10K 100K 10K 100K 1M

Number of parallel ddtd Number of pdrdllel ddtd Number of pdrdllel ddtd Number of pdrallel ddtd Number of pdrd]lel datd Number of parallel data

(a) en-fr (b) fr-en (c) en-de (d) de-en (e) en-ro (f) ro-en
Figure 3. The BLEU score comparisons between MASS and the baseline on low-resource NMT with different scales of paired data.

From "MASS: Masked Sequence to Sequence Pre-training for Language Generation®', Song et al. 2019.



Unsupervised Translation



... atthe core of It all:
decipherment

m argmaxHPg(f)
T

From "Deciphering Foreign Language’, Ravi and Knight 2011.
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decipherment
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Weaver (1955): This is really English, encrypted in some strange symbols

From "Deciphering Foreign Language’, Ravi and Knight 2011.



... atthe core of It all:
decipherment

m argmaxHPg(f)
T

Weaver (1955): This is really English, encrypted in some strange symbols

m__-‘m arg;naxnzp(e) . Pe(fle)
f e

From "Deciphering Foreign Language’, Ravi and Knight 2011.
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Unsupervised MT
(Lample et al. and Artetxe et al. 2018)

1. Embeddings + Unsup. BLI

2. BLI —> Word Translations
MTfe

3. Train MTt« and MTe systems

MT ef
SUICER

French
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NMT: the biggest success
story of NLP Deep Learning

Neural Machine Translation went from a fringe research
activity in 2014 to the leading standard method in 2016

2014: First seq2seq paper published
2016: Google Translate switches from SMT to NMT
This is amazing!

SMT systems, built by hundreds of engineers over many
vears, outperformed by NMT systems trained by a
handful of engineers in a few months



So is Machine Translation
solved”?

* Nope!

* Using common sense is still hard

English~ S ) & Spanish~ m D)

paper jam Mermelada de papel

Feedback



So is Machine Translation
solved”?

* Nope!
« NMT picks up biases in training data

Malay - detected ~ \!/ Pl English~ I— ‘D
Dia bekerja sebagai jururawat. She works as a nurse.
Dia bekerja sebagai pengaturcara. He works as a programmer.

A

Didn’t specify gender

Source: https://hackernoon.com/bias-sexist-or-this-is-the-way-it-should-be-ce1f7c8c683c



So is Machine Translation
solved”?

* Nope!

* Uninterpretable systems do strange things

English Spanish Japanese Detectlanguage -~ English Spanish Arabic ~
M But
AMA /F;ee'. .
e pain is
b‘\bib‘\b\\ \ | feel a strange feeling
DDDIDIDHY My stomach
DHBDBHHH Strange feeling
AARHAHAR A Strange feeling
AR AA uavgn% a bad appearance
\\\\\\\\\ y bad gray
75\‘73“75“73‘\73“73“73‘\73‘\73“ ‘ Strong but burns
DDIDIDIDIDIDIDIDID Strong but burns
ORI ARHA There was a bad shape but a bad shape
MDA A A It is prone to burns, but also a burn
A A A AAAAA Strong but blil’nIShed
AN 0o <

MR NHAHIHAH

Source: http://languagelog.ldc.upenn.edu/nll/?p=35120#more-35120



