ORDER YOUR KAWHE/COFFEE In Māori

He mõwai māku I'll have a flat white He pango poto māku I'll have a short black He pango roa māku I'll have a long black He rate pīni māku I'll have a soy latte He kaputino māku I'll have a cappuccino He rate māku I'll have a latte He tiakarete wera māku I'll have a hot chocolate

Rahi Size

(S) Paku H T (M) Waenga

(L) Nui

Hei kawe atu To take away

> Ki konei To have here

 What's the Māori word for...
 (a) "long"?
 (b) "hot"?

2. How would you order a large cappuccino?

3. What's the word for chocolate?

AthNLP 2024

Machine Translation and Multilinguality

Antonis Anastasopoulos

Acknowledgement: Many slides are taken from <u>Greg Durrett CS388@UT Austin</u>, Graham Neubig's Advanced NLP course@CMU and Philipp Koehn's MT course@JHU

• Intro

- Intro
- A historical note

- Intro
- A historical note
 - Alignment and EM algorithm

- Intro
- A historical note
 - Alignment and EM algorithm
- MT Evaluation

- Intro
- A historical note
 - Alignment and EM algorithm
- MT Evaluation
- Neural MT and LLM-based MT

- Intro
- A historical note
 - Alignment and EM algorithm
- MT Evaluation
- Neural MT and LLM-based MT
- Semi-supervised and Unsupervised MT

 Machine Translation (MT) is the task of translating a sentence x from one language (the source language) to a sentence y in another language (the target language).

 Machine Translation (MT) is the task of translating a sentence x from one language (the source language) to a sentence y in another language (the target language).

 Machine Translation (MT) is the task of translating a sentence x from one language (the source language) to a sentence y in another language (the target language).

x: L'homme est né libre, et partout il est dans les fers

 Machine Translation (MT) is the task of translating a sentence x from one language (the source language) to a sentence y in another language (the target language).

x: L'homme est né libre, et partout il est dans les fers

 Machine Translation (MT) is the task of translating a sentence x from one language (the source language) to a sentence y in another language (the target language).

x: L'homme est né libre, et partout il est dans les fers

y: Man is born free, but everywhere he is in chains

 Machine Translation (MT) is the task of translating a sentence x from one language (the source language) to a sentence y in another language (the target language).

x: L'homme est né libre, et partout il est dans les fers
y: Man is born free, but everywhere he is in chains

• The classic test of language understanding!

- The classic test of language understanding!
 - Both language analysis & generation

- The classic test of language understanding!
 - Both language analysis & generation
- Big MT needs ... for humanity ... and commerce

- The classic test of language understanding!
 - Both language analysis & generation
- Big MT needs ... for humanity ... and commerce

- Translation is a US\$40 billion a year industry

- The classic test of language understanding!
 - Both language analysis & generation
- Big MT needs ... for humanity ... and commerce

- Translation is a US\$40 billion a year industry
- Huge in Europe, growing in Asia

- The classic test of language understanding!
 - Both language analysis & generation
- Big MT needs ... for humanity ... and commerce

- Translation is a US\$40 billion a year industry
- Huge in Europe, growing in Asia
- Large social/government/military as well as commercial needs

					CLASSIC SOUPS Sm.	Lg.
눍	燉	雞	-	57.	House Chicken Soup (Chicken, Celery,	
					Potato, Onion, Carrot)1.50	2.75
雞	Î	б		58.	Chicken Rice Soup 1.85	3.25
雞	10		*	59.	Chicken Noodle Soup1.85	3.25
廣	東	雲	呑	60.	Cantonese Wonton Soup1.50	2.75
퐇	茄	₹	-	61.	Tomato Clear Egg Drop Soup 1.65	2.95
雲	2	5	湯	62.	Regular Wonton Soup 1.10	2.10
酸	产	束	湯	63.	Hot & Sour Soup 1.10	2.10
ङ	Ŧ	ŧ	湯	64.	Egg Drop Soup	2.10
雲	1		*	65.	Egg Drop Wonton Mix1.10	2.10
豆	腐	莱	*	66.	Tofu Vegetable Soup NA	3.50
雞	Ŧ	米	湯	67.	Chicken Corn Cream SoupNA	3.50
譽	肉]	E 米	湯	68.	Crab Meat Corn Cream SoupNA	3.50
海	\$	¥	*	69.	Seafood SoupNA	3.50

• Huge commercial use

- Huge commercial use
 - Google translates over 100 billion words a day

- Huge commercial use
 - Google translates over 100 billion words a day
 - Facebook in 2016 rolled out new homegrown MT

- Huge commercial use
 - Google translates over 100 billion words a day
 - Facebook in 2016 rolled out new homegrown MT
 - eBay uses MT to enable cross-border trade

- Huge commercial use
 - Google translates over 100 billion words a day
 - Facebook in 2016 rolled out new homegrown MT
 - eBay uses MT to enable cross-border trade
- NMT is the flagship task for NLP Deep Learning

- Huge commercial use
 - Google translates over 100 billion words a day
 - Facebook in 2016 rolled out new homegrown MT
 - eBay uses MT to enable cross-border trade
- NMT is the flagship task for NLP Deep Learning
 - RNNs? Encoder-decoder? Attention mechanism?

- Huge commercial use
 - Google translates over 100 billion words a day
 - Facebook in 2016 rolled out new homegrown MT
 - eBay uses MT to enable cross-border trade
- NMT is the flagship task for NLP Deep Learning
 - RNNs? Encoder-decoder? Attention mechanism?
- NMT research has pioneered many of the recent innovations of NLP Deep Learning

A historical note

Fig. 7: Flowchart of part of the dictionary lookup procedures (from Sheridan 1955)

• Machine Translation research began in the early 1950s.

Fig. 7: Flowchart of part of the dictionary lookup procedures (from Sheridan 1955)

- Machine Translation research began in the early 1950s.
- Mostly Russian → English (motivated by the Cold War)

	Read and convert alphabet Initialize complete (left Initialize 1st English lu Initialize 1st diacritic Initialize 1st cell of R Extraxt 1st character of setting "Thumb index" dar.	tic input cards (Ru -half partial) wor inguage-block cell block cell issian input word input word 1st cel in address, Sr	Test mext input word cell for 0 (No) (Yes)
	Table look up for alpha r	region index (Sr. c	Test next input word cell for 0
and the second second second second	Copy first cell of dictio	mary word and test	for '+ 'k- (No)
[(TR+)]			Set diacritic loop exit test
Store extracted 1st cha word look-up	racter for possible right-	half partial	cell and
Copy all succeeding cel with successfully teste	ls of dictionary line asso d Russian word	"Copy word word	annihilate" to next dictionary
Initialize dictionary w Initialize input word 1	ord 1st comparison cell st cell	k-th is 000	character of input word cell
Initialize for k equal comparison subroutine	inglish No. 1, English No. 2, and itic associated with dictionary storing addresses A ₁ , A ₂ , in 3rd		
Extract k-th character test for 0 in accumulat	(1≤k≤5) of imput word ce or	II, and	tic cell chether input word was complete or
kth character of input form difference between word corresponding	word cell is not equal to this and k-th character o	f dictionary	but word was complete: modify input rd, English block copy cell, and
If difference equals 00 so modify k into k+1	00000, there is character	agreement,	critic block copy cell
Test: is k+1 1 Nodify isput word cell	ess than or equal to 5?	Input word was le input word cell of maining cells lef hyphen occupies l address of first	ft-half partial beginning with iontaining hyphen: shift all re- 't, so that lst character following ist character position. Set cell of next input word
Nodify dictionary word	cell address		Set last partial word cell to zero
If difference is not eq is no character agreeme racter of dictionary wo of hyphen k-th character of dicti a hyphen: hence, there agreement in this charac	al to 0000000, there nt, so test k-th cha- cd cell for existence	k-th character of Initialize table using k-th charact Set address parts partial word shif and location of E partial word) in E routine	dictionary word cell is a hyphen: look-up drum address and location, er of input word cell as argument. of instructions in right-half ting subroutime. Store drum address hylish No. 1 (belonging to left-half inglish and diacritic block copy
	y annihilate" succeeding o iictionary word line	cells Copy 1s word an	t cell of mext dictionary
Test	new 1st character against o	Skip to	next dictionary word and
(Agreement) Initia	ize partial word 1st cell		(No agreement)
Modify Modify	initialize English block (initialize discritic block	copy cells	Copy 1st cell of dictionary
Copy all succeeding cell Initialize for dictionar	s of dictionary word line y word 1st comparison cell	Skip to me	xt dictionary wordk
Initialize for character and comparison: k equal No agreement: "copy and	er extraction Extract word cel	k-th character of 11 and test for 000 modify k into k+1	partial k-th character is not equal 0000 to 0000000: compare k-th characters of partial word and dictionary word
k-th character is equal English No. 1 and Engli clated diacritic number and diacritic block cop	to DUDUDUDU: Copy sh No. 2, and asso- s. Modify English y cells and	(No)	SYLES (Yes) Modify partial word cell and dictionary word cell and

Fig. 7: Flowchart of part of the dictionary lookup procedures (from Sheridan 1955)

- Machine Translation research began in the early 1950s.
- Mostly Russian → English (motivated by the Cold War)
 - Georgetown–IBM experiment (1954)

Fig. 7: Flowchart of part of the dictionary lookup procedures (from Sheridan 1955)

- Machine Translation research began in the early 1950s.
- Mostly Russian → English (motivated by the Cold War)
 - Georgetown–IBM experiment (1954)
- Systems were mostly rulebased, using a bilingual dictionary to map Russian words to their English counterparts

Fig. 7: Flowchart of part of the dictionary lookup procedures (from Sheridan 1955)

• Core idea: Learn a probabilistic model from data

- Core idea: Learn a probabilistic model from data
- Suppose we're translating French \rightarrow English.

- Core idea: Learn a probabilistic model from data
- Suppose we're translating French \rightarrow English.
- We want to find best English sentence y, given French sentence x

One naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography. When I look at an article in Russian, I say: 'This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.'

Noisy Channel MT

We want a model of *p(e|f)*

Noisy Channel MT We want a model of p(e|f)Confusing foreign sentence

Noisy Channel MT

Noisy Channel Division of Labor

- Language model p(e)
 - is the translation fluent, grammatical, and idiomatic?
 - use any model of p(e) typically an n-gram model
- Translation model p(f|e)
 - translation probability
 - ensures adequacy of translation

Translation Model

- p(f|e) gives the channel probability the probability of translating an English sentence into a foreign sentence
- f = je voudrais un peu de frommage p(f | e)
- **e**₁ = I would like some cheese
 - $\mathbf{e}_2 = I$ would like a little of cheese
 - \mathbf{e}_3 = There is no train to Barcelona
- >0.00001

0.4

0.5

Translation Model

How do we parameterize p(f|e)?

$$p(f|e) = \frac{count(f,e)}{count(e)}$$

 There are a lot of sentences: this won't generalize to new inputs

• How do we translate a word? Look it up in a dictionary!

• How do we translate a word? Look it up in a dictionary! *Haus: house, home, shell, household*

- How do we translate a word? Look it up in a dictionary! *Haus: house, home, shell, household*
- Multiple translations

- How do we translate a word? Look it up in a dictionary! *Haus: house, home, shell, household*
- Multiple translations
 - Different word senses, different registers, different inflections

- How do we translate a word? Look it up in a dictionary! *Haus: house, home, shell, household*
- Multiple translations
 - Different word senses, different registers, different inflections
 - *house, home* are common

- How do we translate a word? Look it up in a dictionary! *Haus: house, home, shell, household*
- Multiple translations
 - Different word senses, different registers, different inflections
 - *house, home* are common
 - *shell* is specialized (the Haus of a snail is its shell)

How common is each?

Translation	Count
house	5000
home	2000
shell	100
household	80

MLE

$$\hat{p}_{\mathrm{MLE}}(e \mid \mathtt{Haus}) = \begin{cases} 0.696 & \text{if } e = \mathtt{house} \\ 0.279 & \text{if } e = \mathtt{home} \\ 0.014 & \text{if } e = \mathtt{shell} \\ 0.011 & \text{if } e = \mathtt{household} \\ 0 & \text{otherwise} \end{cases}$$

- Goal: a model *p*(*e*|*f*,*m*)
- where e and f are complete English and Foreign sentences

- Goal: a model p(e|f,m)
- where e and f are complete English and Foreign sentences

$$\mathbf{e} = \langle e_1, e_2, \dots, e_m \rangle$$

- Goal: a model p(e|f,m)
- where e and f are complete English and Foreign sentences

 $\mathbf{e} = \langle e_1, e_2, \dots, e_m \rangle$ $\mathbf{f} = \langle f_1, f_2, \dots, f_n \rangle$

• Goal: a model *p*(*e*|*f*,*m*)

- Goal: a model *p*(*e*|*f*,*m*)
- where e and f are complete English and Foreign sentences

- Goal: a model *p(e|f,m)*
- where e and f are complete English and Foreign sentences
- Lexical translation makes the following *assumptions*:

- Goal: a model *p*(*e*|*f*,*m*)
- where e and f are complete English and Foreign sentences
- Lexical translation makes the following *assumptions*:
 - Each word ${\bf e}_{\rm i}$ in ${\bf e}$ is generated from exactly one word in ${\bf f}$
Lexical Translation

- Goal: a model *p(e|f,m)*
- where e and f are complete English and Foreign sentences
- Lexical translation makes the following *assumptions*:
 - Each word ${\bf e}_{\rm i}$ in ${\bf e}$ is generated from exactly one word in ${\bf f}$
 - Thus, we have a latent *alignment* a_i that indicates which word e_i "came from." Specifically it came from f_{ai}.

Lexical Translation

- Goal: a model *p*(*e*|*f*,*m*)
- where e and f are complete English and Foreign sentences
- Lexical translation makes the following *assumptions*:
 - Each word ${\bf e}_{\rm i}$ in ${\bf e}$ is generated from exactly one word in ${\bf f}$
 - Thus, we have a latent *alignment* a_i that indicates which word e_i "came from." Specifically it came from f_{ai}.
 - Given the alignments a, translation decisions are conditionally independent of each other and depend *only* on the aligned source word f_{ai}.

Lexical Translation

• Putting our assumptions together, we have:

$$p(\mathbf{e} \mid \mathbf{f}, m) = \sum_{\mathbf{a} \in [0, n]^m} p(\mathbf{a} \mid \mathbf{f}, m) \times \prod_{i=1}^m p(e_i \mid f_{a_i})$$

$$p(\text{Alignment}) \qquad p(\text{Translation | Alignment})$$

m

What is alignment?

 Alignment is the correspondence between particular words in the translated sentence pair.

Alignment

$p(\mathbf{a} \mid \mathbf{f}, m)$

 Most of the action for the first 10 years of MT was here. Words weren't the problem. Word *order* was hard.

Alignment

 Alignments can be visualized by drawing links between two sentences, and they are represented as vectors of positions:

 $\mathbf{a}=(1,2,3,4)^+$

Reordering

Words may be reordered during translation

Word Dropping

• A source word may not be translated at all

$$\mathbf{a} = (2, 3, 4)^{\top}$$

Word Insertion

- Words may be inserted during translation
- E.g. English just does not have an equivalent
- But these words must be explained we typically assume every source sentence contains a NULL token

One-to-many Translation

 A source word may translate into more than one target word

 $\mathbf{a} = (1,2,3,4,4)^{ op}$

Many-to-one Translation

 More than one source word may not translate as a unit in lexical translation

IBM Model 1

- Simplest possible lexical translation model
- Additional assumptions:
 - The *m* alignment decisions are independent
 - The alignment distribution for each a_i is uniform over all source words and NULL

for each $i \in [1, 2, ..., m]$ $a_i \sim \text{Uniform}(0, 1, 2, ..., n)$ $e_i \sim \text{Categorical}(\boldsymbol{\theta}_{f_{a_i}})$

Translating with Model 1

0 1 2 3 4 NULL das Haus ist klein

1 2 3 4

Translating with Model 1

Language model says: ③

Translating with Model 1

Language model says: ③

• How do we learn the parameters p(e|f)?

- How do we learn the parameters p(e|f)?
- "Chicken and egg" problem

- How do we learn the parameters p(e|f)?
- "Chicken and egg" problem
 - If we had the alignments, we could estimate the translation probabilities (MLE estimation)

- How do we learn the parameters p(e|f)?
- "Chicken and egg" problem
 - If we had the alignments, we could estimate the translation probabilities (MLE estimation)
 - If we had the translation probabilities we could find the most likely alignments (greedy)

- How do we learn the parameters p(e|f)?
- "Chicken and egg" problem
 - If we had the alignments, we could estimate the translation probabilities (MLE estimation)
 - If we had the translation probabilities we could find the most likely alignments (greedy)

- How do we learn the parameters p(e|f)?
- "Chicken and egg" problem
 - If we had the alignments, we could estimate the translation probabilities (MLE estimation)
 - If we had the translation probabilities we could find the most likelv alignments (greedy)

• Pick some random (or uniform) starting parameters

- Pick some random (or uniform) starting parameters
- Repeat until bored (~5 iterations for lexical translation models):

- Pick some random (or uniform) starting parameters
- Repeat until bored (~5 iterations for lexical translation models):
 - Using the current parameters, compute "expected" alignments p(a_i|e,
 f) for every target word token in the training data

- Pick some random (or uniform) starting parameters
- Repeat until bored (~5 iterations for lexical translation models):
 - Using the current parameters, compute "expected" alignments p(a_i|e,
 f) for every target word token in the training data
 - Keep track of the expected number of times *f* translates into *e* throughout the whole corpus

- Pick some random (or uniform) starting parameters
- Repeat until bored (~5 iterations for lexical translation models):
 - Using the current parameters, compute "expected" alignments p(a_i|e,
 f) for every target word token in the training data
 - Keep track of the expected number of times *f* translates into *e* throughout the whole corpus
 - Keep track of the number of times *f* is used in the source of any translation

- Pick some random (or uniform) starting parameters
- Repeat until bored (~5 iterations for lexical translation models):
 - Using the current parameters, compute "expected" alignments p(a_i|e,
 f) for every target word token in the training data
 - Keep track of the expected number of times *f* translates into *e* throughout the whole corpus
 - Keep track of the number of times *f* is used in the source of any translation
 - Use these estimates in the standard MLE equation to get a better set of parameters

EM for Model 1

- Initial step: all alignments equally likely
- Model learns that, e.g., la is often aligned with the

EM for Model 1

- After one iteration
- Alignments, e.g., between la and the are more likely

EM for Model 1

- After another iteration
- It becomes apparent that alignments, e.g., between fleur and flower are more likely (pigeon hole principle)

• Parameter estimation from the aligned corpus

Convergence

the house

e	f	initial	1st it.	2nd it.	3rd it.	 final
the	das	0.25	0.5	0.6364	0.7479	 1
book	das	0.25	0.25	0.1818	0.1208	 0
house	das	0.25	0.25	0.1818	0.1313	 0
the	buch	0.25	0.25	0.1818	0.1208	 0
book	buch	0.25	0.5	0.6364	0.7479	 1
a	buch	0.25	0.25	0.1818	0.1313	 0
book	ein	0.25	0.5	0.4286	0.3466	 0
a	ein	0.25	0.5	0.5714	0.6534	 1
the	haus	0.25	0.5	0.4286	0.3466	 0
house	haus	0.25	0.5	0.5714	0.6534	 1

From words to phrases

Word Alignment

	michael	geht	davon	aus	dass	er	<u>.</u>	haus	bleibt
michael									
assumes									
that									
he									
will									
stay									
in									
the									
house									
Extracting Phrase Pairs

extract phrase pair consistent with word alignment: assumes that / geht davon aus , dass

Consistent

Phrase pair (\bar{e}, \bar{f}) consistent with an alignment A, if all words $f_1, ..., f_n$ in \bar{f} that have alignment points in A have these with words $e_1, ..., e_n$ in \bar{e} and vice versa:

 $(\bar{e}, \bar{f}) \text{ consistent with } A \Leftrightarrow$ $\forall e_i \in \bar{e} : (e_i, f_j) \in A \to f_j \in \bar{f}$ $\text{AND } \forall f_j \in \bar{f} : (e_i, f_j) \in A \to e_i \in \bar{e}$ $\text{AND } \exists e_i \in \bar{e}, f_j \in \bar{f} : (e_i, f_j) \in A$

Phrase Pair Extraction

unaligned words (here: German comma) lead to multiple translations

Larger Phrase Pairs

michael assumes — michael geht davon aus / michael geht davon aus , assumes that — geht davon aus , dass ; assumes that he — geht davon aus , dass er that he — dass er / , dass er ; in the house — im haus michael assumes that — michael geht davon aus , dass michael assumes that he — michael geht davon aus , dass er michael assumes that he will stay in the house — michael geht davon aus , dass er im haus bleibt assumes that he will stay in the house — geht davon aus , dass er im haus bleibt that he will stay in the house — geht davon aus , dass er im haus bleibt that he will stay in the house — dass er im haus bleibt ; dass er im haus bleibt , he will stay in the house — er im haus bleibt ; will stay in the house — im haus bleibt

Extensions

- Phrase-based MT:
 - Allow multiple words to translate as chunks (including many-to-one)
 - Introduce another latent variable, the source *segmentation*

Adapted from Koehn (2006)

Another Paradigm: Syntax-Based MT

- Syntactic structure
- Rules of the form:
- $X \ge \rightarrow$ one of the X

2014

(dramatic reenactment)

What is Neural Machine Translation?

- Neural Machine Translation (NMT) is a way to do Machine Translation with a single neural network
- The neural network architecture is called sequence-tosequence (aka seq2seq) and it involves two RNNs.

Conditional Language Models

$$P(Y|X) = \prod_{j=1}^{J} P(y_j \mid X, y_1, \dots, y_{j-1})$$

Conditional Language Models

$$P(Y|X) = \prod_{j=1}^{J} P(y_j \mid X, y_1, \dots, y_{j-1})$$

$$\downarrow$$
Added Context!

(One Type of) Conditional Language Model (Sutskever et al. 2014)

(One Type of) Conditional Language Model (Sutskever et al. 2014)

Encoder

(One Type of) Conditional Language Model (Sutskever et al. 2014)

Encoder

Decoder

Neural Machine Translation (NMT)

Neural Machine Translation (NMT)

• Compared to SMT, NMT has many advantages:

- Compared to SMT, NMT has many advantages:
- Better performance

- Compared to SMT, NMT has many advantages:
- Better performance
 - More fluent

- Compared to SMT, NMT has many advantages:
- Better performance
 - More fluent
 - Better use of context

- Compared to SMT, NMT has many advantages:
- Better performance
 - More fluent
 - Better use of context
 - Better use of phrase similarities

- Compared to SMT, NMT has many advantages:
- Better performance
 - More fluent
 - Better use of context
 - Better use of phrase similarities
- A single neural network to be optimized end-to-end

- Compared to SMT, NMT has many advantages:
- Better performance
 - More fluent
 - Better use of context
 - Better use of phrase similarities
- A single neural network to be optimized end-to-end
 - No subcomponents to be individually optimized

- Compared to SMT, NMT has many advantages:
- Better performance
 - More fluent
 - Better use of context
 - Better use of phrase similarities
- A single neural network to be optimized end-to-end
 - No subcomponents to be individually optimized
- Requires much less human engineering effort

- Compared to SMT, NMT has many advantages:
- Better performance
 - More fluent
 - Better use of context
 - Better use of phrase similarities
- A single neural network to be optimized end-to-end
 - No subcomponents to be individually optimized
- Requires much less human engineering effort
 - No feature engineering

- Compared to SMT, NMT has many advantages:
- Better performance
 - More fluent
 - Better use of context
 - Better use of phrase similarities
- A single neural network to be optimized end-to-end
 - No subcomponents to be individually optimized
- Requires much less human engineering effort
 - No feature engineering
 - Same method for all language pairs

Compared to SMT:

• NMT is less interpretable

- NMT is less interpretable
 - Hard to debug

- NMT is less interpretable
 - Hard to debug
- NMT is difficult to control

- NMT is less interpretable
 - Hard to debug
- NMT is difficult to control
 - For example, can't easily specify rules or guidelines for translation

- NMT is less interpretable
 - Hard to debug
- NMT is difficult to control
 - For example, can't easily specify rules or guidelines for translation
 - Safety concerns!

Generation

Can we find the best (most likely) translation?

Generation through Sampling

No but we can approximate it!
Generating New Sentences

Generating New Sentences

• Generate sentences:

while didn't choose end-of-sentence symbol: calculate probability of $P(x_t | x_1, \dots, x_{t-1})$

Greedy Decoding

- Generate next word conditioned on the context (i.e., the previously generated words)
- "Greedy": always pick the most probable next word $x_t = argmax_{\hat{x}}P(\hat{x} | x_1, \dots, x_{t-1})$

Greedy Decoding

- Generate next word conditioned on the context (i.e., the previously generated words)
- "Greedy": always pick the most probable next word $x_t = argmax_{\hat{x}}P(\hat{x} | x_1, \dots, x_{t-1})$
- Problem:
 - The most probable next word does not always lead to the most probable sentence;
 - We should be able to generate a diverse set of sentences!

• Beam search: instead of picking one highprobability word, maintain several paths

• Beam search: instead of picking one highprobability word, maintain several paths

а	0.001
the	0.0002
1	0.12
vou	0.04
cat	0.0004
movie	0.01
this	0.02

• • •

k=2

а	0.001
the	0.0002
I	0.12 ←
vou	0.04 🛀
cat	0.0004
movie	0.01
this	0.02

• • •

k=2

0.001 а the 0.0002 0.5 hate this 0.001 0.003 cat 0.07 movie don't 0.3 -.

а	0.001	
the	0.0002	
hate	0.5	-
this	0.001	
cat	0.003	
movie	0.07	
don't	0.3	-

an	0.0012
be	0.0002
hate	0.5 ←
these	0.001
doa	0.003
movie	0.07
like	0.3 🔶

an	0.0012
be	0.0002
hate	0.5 ←
these	0.001
doa	0.003
movie	0.07
like	0.3 🕇

an	0.0012
be	0.0002
hate	0.5 ←
these	0.001
doa	0.003
movie	0.07
like	0.3 🔶

Evaluation

Machine Translation (reference based)

Mi piacerebbe un cappuccino freddo.

I like one cold cappuccino.

Machine Translation (reference based)

Mi piacerebbe un cappuccino freddo.

I like one cold cappuccino.

reference: I would like a cold cappuccino.

Machine Translation (reference based)

Mi piacerebbe un cappuccino freddo.

I like one cold cappuccino.

reference: I would like a cold cappuccino.

Compare the output with the reference!

BLEU (Bilingual Evaluation Understudy)

 BLEU compares the machine-written translation to one or several human-written translation(s), and computes a similarity score based on:

- BLEU compares the machine-written translation to one or several human-written translation(s), and computes a similarity score based on:
 - n-gram precision (usually up to 3 or 4-grams)

- BLEU compares the machine-written translation to one or several human-written translation(s), and computes a similarity score based on:
 - n-gram precision (usually up to 3 or 4-grams)
 - Penalty for too-short system translations

- BLEU compares the machine-written translation to one or several human-written translation(s), and computes a similarity score based on:
 - n-gram precision (usually up to 3 or 4-grams)
 - Penalty for too-short system translations
- BLEU is useful but imperfect

- BLEU compares the machine-written translation to one or several human-written translation(s), and computes a similarity score based on:
 - n-gram precision (usually up to 3 or 4-grams)
 - Penalty for too-short system translations
- BLEU is useful but imperfect
 - There are many valid ways to translate a sentence

- BLEU compares the machine-written translation to one or several human-written translation(s), and computes a similarity score based on:
 - n-gram precision (usually up to 3 or 4-grams)
 - Penalty for too-short system translations
- BLEU is useful but imperfect
 - There are many valid ways to translate a sentence
 - So a good translation can get a poor BLEU score because it has low n-gram overlap with the human translation

reference: I would like a cold cappuccino

reference: I would like a cold cappuccino

reference: I would like a cold cappuccino

Unigrams	4/5
Bigrams	1/4

reference: I would like a cold cappuccino

Unigrams	4/5
Bigrams	1/4
3-grams	0/3
reference: I would like a cold cappuccino

hypothesis: I like one cold cappuccino

Unigrams	4/5
Bigrams	1/4
3-grams	0/3
4-grams	0/2

reference: I would like a cold cappuccino

hypothesis: I like one cold cappuccino

reference: I would like a cold cappuccino

hypothesis: I like one cold cappuccino

Can we cheat?

reference: I would like a cold cappuccino

hypothesis: I like like like like one cold cappuccino

Unigrams	7/8
Bigrams	1/7
3-grams	0/6
4-grams	0/5

Can we cheat?

Solution: Only count each word once.

reference: I would like a cold cappuccino

hypothesis: I would like

Unigrams	3/3
Bigrams	2/2
3-grams	1/1
4-grams	

Can we cheat?

Solution: Brevity Penalty.

reference: I would like a cold cappuccino

hypothesis 1: I would like one cold cappuccino

These three hypotheses have the same BLEU score!

Solution: Use paraphrases, synonyms, etc (Meteor)

reference: I would like a cold cappuccino

hypothesis 1: I would like one cold cappuccino

hypothesis 2: I would like a cold espresso

These three hypotheses have the same BLEU score!

Solution: Use paraphrases, synonyms, etc (Meteor)

reference: I would like a cold cappuccino

hypothesis 1: I would like one cold cappuccino

hypothesis 2: I would like a cold espresso

hypothesis 3: *I would like a cold monk*

These three hypotheses have the same BLEU score!

Solution: Use paraphrases, synonyms, etc (Meteor)

source: behaving as if you are among those whom we could not civilize

reference: uygarlatıramadıklarımızdanmı, ssınızcasına

Languages with Rich Morphology: How dow we even evaluate this?

Solution: Use subwords, character-Fscore – chrF

MT: Human Evaluation

It is almost always better to ask humans! e.g. in MT, we ask translators

Way 1:

We show system outputs to the annotators, and they provide a score (e.g. 1-5 Likert scale, or 0-100 score)

Way 2:

We show **2** system outputs to the annotators, and they annotate which one of the two they think is better.

Evaluation of Evaluation Metrics

- Automatic metrics are low cost, tunable, consistent
- But are they correct?
- $\rightarrow\,$ Yes, if they correlate with human judgement

Evidence of Shortcomings of Automatic Metrics

Post-edited output vs. statistical systems (NIST 2005)

Evidence of Shortcomings of Automatic Metrics

Rule-based vs. statistical systems

WMT Metrics Shared Task

avg corr

Metric

	XCOMET-Ensemble	1	0.825
	XCOMET-OE-Ensemble*	2	0.808
 Annual event to evaluate metrics 	MetricX-23	2	0.808
	GEMBA-MOM*	2	0.802
	MetricX-23-QE*	2	0.800
	mbr-metricx-qe*	3	0.788
	MaTESe	3	0.782
Discus basis on the WINT Consul Translation Task	CometKiwi*	3	0.782
• riggy-backs on the wivir General Indistation lask	<u>COMET</u>	3	0.779
	BLEURT-20	3	0.776
nous back act assams staan	KG-BERTScore*	3	0.774
- new lest set every year	sescoreX	3	0.772
- research systems and commercial systems	cometoid22-wmt22*	4	0.772
- research systems and commercial systems	docWMT22CometDA	4	0.768
🗕 lately also large language models	docWMT22CometKiwiDA*	4	0.767
latery also large language models	Calibri-COMET22	4	0.767
 human evaluation of automatic evaluations 	Calibri-COMET22-QE*	4	0.755
	$\underline{Y_1S_{1-1}}$	4	0.754
	MS-COMET-QE-22*	5	0.744
	prismRef	5	0.744
	mre-score-labse-regular	5	0.743
• Now matrice proposed	BERTscore	5	0.742
• New memos proposed	XLSIM	6	0.719
	1200spBLEU	/	0.704
	MEE4	7	0.704
	tokengram_F	7	0.703
. Eveluation by completion with human indements	embed_llama	1	0.701
• Evaluation by correlation with numan judgments	BLEU	1	0.696
	<u>cnrr</u>	1	0.694
	eBLEU Bandam avanama*	0	0.692
	Kandom-sysname*	ð	0.529
(WMT 2023)	prismSrc*	9	0.455

Trained Metrics: COMET

- Two decades of evaluation campaigns for machine translation metrics \rightarrow a lot of human judgment data
- Goal: automatic metric that correlates with human judgment
- Make it a machine learning problem
 - input: machine translation, reference translation
 - output: human annotation score
- COMET: Trained neural model for evaluation

Reference-Free Evaluation

• We have data in the form

input, translation, human reference \rightarrow human judgment

• We can also train a model on

input, translation \rightarrow human judgment

- CometKiwi: trained evaluation model without references
- Also called **quality estimation** or **confidence estimation**

Semisupervised and Unsupervised Methods

Train French->English

Back-Translate Monolingual data

Train French->English

Back-Translate Monolingual data

Semi-Supervised Learning for MT (Cheng et al. 2016)

Round-trip translation for supervision

Shaded regions are pre-trained

From "Unsupervised Pretraining for Sequence to Sequence Learning", Ramachadran et al. 2017.

Figure 1. The encoder-decoder framework for our proposed MASS. The token " $_$ " represents the mask symbol [M].

From "MASS: Masked Sequence to Sequence Pre-training for Language Generation", Song et al. 2019.

(a) Masked language modeling in BERT (k = 1)

(b) Standard language modeling (k = m)

From "MASS: Masked Sequence to Sequence Pre-training for Language Generation", Song et al. 2019.

Figure 3. The BLEU score comparisons between MASS and the baseline on low-resource NMT with different scales of paired data.

From "MASS: Masked Sequence to Sequence Pre-training for Language Generation", Song et al. 2019.

Unsupervised Translation

... at the core of it all: decipherment

$$\arg\max_{\theta} \prod_{f} P_{\theta}(f)$$

From "Deciphering Foreign Language", Ravi and Knight 2011.

... at the core of it all: decipherment

$$\arg\max_{\theta} \prod_{f} P_{\theta}(f)$$

Weaver (1955): This is really English, encrypted in some strange symbols

French

From "Deciphering Foreign Language", Ravi and Knight 2011.

... at the core of it all: decipherment

$$rgmax_{ heta} \prod_{f} P_{ heta}(f)$$

Weaver (1955): This is really English, encrypted in some strange symbols

French

$$rg\max_{ heta} \prod_{f} \sum_{e} P(e) \cdot P_{ heta}(f|e)$$

From "Deciphering Foreign Language", Ravi and Knight 2011.

1. Embeddings + Unsup. BLI

1. Embeddings + Unsup. BLI

2. BLI —> Word Translations

English

Embeddings + Unsup. BLI
BLI —> Word Translations

- 1. Embeddings + Unsup. BLI
- 2. BLI —> Word Translations
- 3. Train MT_{fe} and MT_{ef} systems

- 1. Embeddings + Unsup. BLI
- 2. BLI —> Word Translations
- 3. Train MT_{fe} and MT_{ef} systems
- 4. Meanwhile, use unsupervised objectives (denoising LM)

- 1. Embeddings + Unsup. BLI
- 2. BLI —> Word Translations
- 3. Train MT_{fe} and MT_{ef} systems
- 4. Meanwhile, use unsupervised objectives (denoising LM)

5. Iterate

- 1. Embeddings + Unsup. BLI
- 2. BLI —> Word Translations
- 3. Train MT_{fe} and MT_{ef} systems
- 4. Meanwhile, use unsupervised objectives (denoising LM)

5. Iterate

- 1. Embeddings + Unsup. BLI
- 2. BLI —> Word Translations
- 3. Train MT_{fe} and MT_{ef} systems
- 4. Meanwhile, use unsupervised objectives (denoising LM)

5. Iterate

Neural Machine Translation went from a fringe research activity in 2014 to the leading standard method in 2016

• 2014: First seq2seq paper published

- 2014: First seq2seq paper published
- 2016: Google Translate switches from SMT to NMT

- 2014: First seq2seq paper published
- 2016: Google Translate switches from SMT to NMT
- This is amazing!

- 2014: First seq2seq paper published
- 2016: Google Translate switches from SMT to NMT
- This is amazing!
- SMT systems, built by hundreds of engineers over many years, outperformed by NMT systems trained by a handful of engineers in a few months

So is Machine Translation solved?

- Nope!
- Using common sense is still hard

Open in Google Translate

Feedback

So is Machine Translation solved?

- Nope!
- NMT picks up biases in training data

Malay - detected	, U	$\stackrel{\rightarrow}{\leftarrow}$	English -	
Dia bekerja se Dia bekerja se	bagai jururawat. bagai pengaturcara.	Edit	She works as a nurse. He works as a programmer.	

Didn't specify gender

Source: https://hackernoon.com/bias-sexist-or-this-is-the-way-it-should-be-ce1f7c8c683c

So is Machine Translation solved?

- Nope!
- Uninterpretable systems do strange things

English Spanish Japanese Detect language -	English Spanish Arabic - Translate
が ががが ががががが がががががが がががががががが がががががががががが	But PeelA pain is I feel a strange feeling My stomach Strange feeling Strange feeling Having a bad appearance My bad gray Strong but burns Strong but burns There was a bad shape but a bad shape It is prone to burns, but also a burn Strong but burnished☆ImImImImage feeling Strong but burns Strong but burns Strong but burnsImage feeling

Source: http://languagelog.ldc.upenn.edu/nll/?p=35120#more-35120