
1. What’s the Māori word 
for… 
(a) “long”?

(b) “hot”?


2. How would you order a 
large cappuccino?


3. What’s the word for 
chocolate?
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• Intro

• A historical note

- Alignment and EM algorithm

• MT Evaluation 

• Neural MT and LLM-based MT

• Semi-supervised and Unsupervised MT 
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Machine Translation
• The classic test of language 

understanding!

- Both language analysis & generation

• Big MT needs ... for humanity ... and 
commerce

- Translation is a US$40 billion a year industry

- Huge in Europe, growing in Asia

- Large social/government/military as well as 
commercial needs
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The need for Machine Translation
• Huge commercial use 

- Google translates over 100 billion words a day

- Facebook in 2016 rolled out new homegrown MT 

- eBay uses MT to enable cross-border trade

• NMT is the flagship task for NLP Deep Learning

- RNNs? Encoder-decoder? Attention mechanism?

• NMT research has pioneered many of the recent 
innovations of NLP Deep Learning
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1950s: Early Machine Translation
• Machine Translation research 

began in the early 1950s.

• Mostly Russian → English 
(motivated by the Cold War)

- Georgetown–IBM experiment 
(1954)

• Systems were mostly rule-
based, using a bilingual 
dictionary to map Russian 
words to their English 
counterparts

Flow chart of the dictionary 
look-up procedures (source)

https://www.historyofinformation.com/detail.php?id=666


1990s-2010s: Statistical Machine 
Translation



1990s-2010s: Statistical Machine 
Translation

• Core idea: Learn a probabilistic model from data



1990s-2010s: Statistical Machine 
Translation

• Core idea: Learn a probabilistic model from data

• Suppose we’re translating French → English.



1990s-2010s: Statistical Machine 
Translation

• Core idea: Learn a probabilistic model from data

• Suppose we’re translating French → English.

• We want to find best English sentence y, given French 
sentence x



Greek

Egyptian



One naturally wonders if the 
problem of translation could 
conceivably be treated as a 

problem in cryptography. When 
I look at an article in Russian, I 
say: ‘This is really written in 

English, but it has been coded 
in some strange symbols. I will 

now proceed to decode.’

Warren Weaver to Norbert Wiener, March, 1947
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Noisy Channel MT
We want a model of p(e|f)

Possible English translation

Confusing foreign sentence



Noisy Channel MT

p(e) e f

channel

“English” “Foreign”

decode

p(f|e)



Noisy Channel MT

“Language Model” “Translation Model”



Noisy Channel Division of Labor
• Language model – p(e)

• is the translation fluent, grammatical, and idiomatic?

• use any model of p(e) – typically an n-gram model


• Translation model – p(f|e)

• translation probability

• ensures adequacy of translation



Translation Model
• p(f|e) gives the channel probability – the probability of 

translating an English sentence into a foreign sentence


• f = je voudrais un peu de frommage


• e1 = I would like some cheese


   e2 = I would like a little of cheese


   e3 = There is no train to Barcelona

0.4


0.5


>0.00001

p(f|e)



Translation Model
• How do we parameterize p(f|e)?


• There are a lot of sentences: this won’t generalize to 
new inputs

?
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Lexical Translation
• How do we translate a word? Look it up in a dictionary!
	 Haus: house, home, shell, household
• Multiple translations
• Different word senses, different registers, different 

inflections
• house, home are common
• shell is specialized (the Haus of a snail is its shell)



How common is each?
Translation Count

house 5000
home 2000
shell 100

household 80



MLE
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Lexical Translation
• Goal: a model p(e|f,m)

• where e and f are complete English and Foreign sentences

• Lexical translation makes the following assumptions:
• Each word ei in e is generated from exactly one word in f

• Thus, we have a latent alignment ai that indicates which word ei 
“came from.” Specifically it came from fai.
• Given the alignments a, translation decisions are conditionally 

independent of each other and depend only on the aligned source 
word fai.



Lexical Translation
• Putting our assumptions together, we have:

p(Alignment) p(Translation | Alignment)



What is alignment?
• Alignment is the correspondence between particular 

words in the translated sentence pair.


•  Note: Some words have no counterpart



Alignment

• Most of the action for the first 10 years of MT was 
here. Words weren’t the problem. Word order was 
hard.



Alignment
• Alignments can be visualized by drawing links between 

two sentences, and they are represented as vectors of 
positions:



Reordering
• Words may be reordered during translation



Word Dropping
• A source word may not be translated at all



Word Insertion
• Words may be inserted during translation


• E.g. English just does not have an equivalent


• But these words must be explained – we typically assume 
every source sentence contains a NULL token



One-to-many Translation
• A source word may translate into more than one 

target word



Many-to-one Translation
• More than one source word may not translate as a unit 

in lexical translation



IBM Model 1
• Simplest possible lexical translation model


• Additional assumptions:

• The m alignment decisions are independent

• The alignment distribution for each ai is uniform over all 

source words and NULL



Translating with Model 1
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Translating with Model 1

Language model says: ☹
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EM Algorithm
• Pick some random (or uniform) starting parameters

• Repeat until bored (~5 iterations for lexical translation models):
• Using the current parameters, compute “expected” alignments p(ai|e, 

f) for every target word token in the training data
• Keep track of the expected number of times f translates into e 

throughout the whole corpus
• Keep track of the number of times f is used in the source of any 

translation
• Use these estimates in the standard MLE equation to get a better set 

of parameters
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Convergence



From words to 
phrases



13Word Alignment

house

the

in

stay

will

he

that

assumes
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Philipp Koehn Machine Translation: Phrase-Based Models 10 September 2024



14Extracting Phrase Pairs

house

the

in

stay

will

he

that

assumes

michael

m
ic

ha
el

ge
ht

da
vo

n

au
s

da
ss

er im ha
us

bl
ei

bt

,
extract phrase pair consistent with word alignment:

assumes that / geht davon aus , dass

Philipp Koehn Machine Translation: Phrase-Based Models 10 September 2024



16Consistent

Phrase pair (ē, f̄) consistent with an alignment A, if all words f1, ..., fn in f̄ that
have alignment points in A have these with words e1, ..., en in ē and vice versa:

(ē, f̄) consistent with A ,
8ei 2 ē : (ei, fj) 2 A ! fj 2 f̄

AND 8fj 2 f̄ : (ei, fj) 2 A ! ei 2 ē

AND 9ei 2 ē, fj 2 f̄ : (ei, fj) 2 A

Philipp Koehn Machine Translation: Phrase-Based Models 10 September 2024



17Phrase Pair Extraction

house

the

in

stay

will

he

that

assumes

michael

m
ic

ha
el

ge
ht

da
vo

n

au
s

da
ss

er im ha
us

bl
ei

bt

,

Smallest phrase pairs:
michael — michael

assumes — geht davon aus / geht davon aus ,
that — dass / , dass

he — er
will stay — bleibt

in the — im
house — haus

unaligned words (here: German comma) lead to multiple translations

Philipp Koehn Machine Translation: Phrase-Based Models 10 September 2024



18Larger Phrase Pairs

house

the

in

stay

will

he

that
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michael

m
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ge
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da
ss
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bt

,

michael assumes — michael geht davon aus / michael geht davon aus ,
assumes that — geht davon aus , dass ; assumes that he — geht davon aus , dass er

that he — dass er / , dass er ; in the house — im haus
michael assumes that — michael geht davon aus , dass

michael assumes that he — michael geht davon aus , dass er
michael assumes that he will stay in the house — michael geht davon aus , dass er im haus bleibt

assumes that he will stay in the house — geht davon aus , dass er im haus bleibt
that he will stay in the house — dass er im haus bleibt ; dass er im haus bleibt ,

he will stay in the house — er im haus bleibt ; will stay in the house — im haus bleibt

Philipp Koehn Machine Translation: Phrase-Based Models 10 September 2024



Extensions
• Phrase-based MT:

• Allow multiple words to translate as chunks (including 

many-to-one)

• Introduce another latent variable, the source 

segmentation



Another Paradigm: Syntax-Based MT

• Syntactic structure


• Rules of the form:


• X之⼀  one of the X

Chang (2005), Galley et al. (2006)







What is Neural Machine Translation?
• Neural Machine Translation (NMT) is a way to do 

Machine Translation with a single neural network


• The neural network architecture is called sequence-to-
sequence (aka seq2seq) and it involves two RNNs.
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Conditional Language 
Models

P (Y |X) =
JY

j=1

P (yj | X, y1, . . . , yj�1)

Added Context!



LSTM LSTM LSTM LSTM LSTM

</s>

LSTM LSTM LSTM LSTM

argmax argmax argmax argmax

</s>
argmax

(One Type of) Conditional Language Model

(Sutskever et al. 2014)

I hate this movie

kono eiga ga kirai

I hate this movie



LSTM LSTM LSTM LSTM LSTM

</s>

LSTM LSTM LSTM LSTM

argmax argmax argmax argmax

</s>
argmax

(One Type of) Conditional Language Model

(Sutskever et al. 2014)

I hate this movie

kono eiga ga kirai

I hate this movie

Encoder



LSTM LSTM LSTM LSTM LSTM

</s>

LSTM LSTM LSTM LSTM

argmax argmax argmax argmax

</s>
argmax

(One Type of) Conditional Language Model

(Sutskever et al. 2014)

I hate this movie

kono eiga ga kirai

I hate this movie

Encoder

Decoder
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Advantages of NMT
• Compared to SMT, NMT has many advantages:
• Better performance 
• More fluent
• Better use of context
• Better use of phrase similarities

• A single neural network to be optimized end-to-end 
• No subcomponents to be individually optimized

• Requires much less human engineering effort 
• No feature engineering
• Same method for all language pairs
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Disadvantages of NMT?
Compared to SMT:

• NMT is less interpretable

• Hard to debug

• NMT is difficult to control

• For example, can’t easily specify rules or guidelines for 
translation

• Safety concerns!



Generation
Can we find the best (most likely) translation?



Generation through 
Sampling

No but we can approximate it!
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Generating New Sentences
• Generate sentences:

while didn’t choose end-of-sentence symbol:

       calculate probability of 


P(xt |x1, . . . , xt−1)



Greedy Decoding
• Generate next word conditioned on the context 

(i.e., the previously generated words)


• “Greedy”: always pick the most probable next word 
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Greedy Decoding
• Generate next word conditioned on the context 

(i.e., the previously generated words)


• “Greedy”: always pick the most probable next word 
xt = argmax ̂xP( ̂x |x1, . . . , xt−1)

• Problem: 

- The most probable next word does not always 

lead to the most probable sentence;

- We should be able to generate a diverse set of 

sentences!
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reference: I would like a cold cappuccino.

Compare the output with the reference!
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BLEU (Bilingual Evaluation Understudy)

• BLEU compares the machine-written translation to one or 
several human-written translation(s), and computes a 
similarity score based on:

• n-gram precision (usually up to 3 or 4-grams)  

• Penalty for too-short system translations

• BLEU is useful but imperfect

• There are many valid ways to translate a sentence

• So a good translation can get a poor BLEU score because 
it has low n-gram overlap with the human translation ☹

How do we evaluate MT?
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Machine Translation: BLEU

hypothesis: I like like like like one cold cappuccino

reference: I would like a cold cappuccino

Unigrams 7/8

Bigrams 1/7

3-grams 0/6

4-grams 0/5

Solution: Only count each word once.

Can we cheat?



Machine Translation: BLEU

hypothesis: I would like

reference: I would like a cold cappuccino

Unigrams 3/3

Bigrams 2/2

3-grams 1/1

4-grams —

Solution: Brevity Penalty.

Can we cheat?
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MT: Problems with BLEU

hypothesis 1: I would like one cold cappuccino

reference: I would like a cold cappuccino

hypothesis 2: I would like a cold espresso

hypothesis 3: I would like a cold monk

These three hypotheses have the same BLEU score!

Solution: Use paraphrases, synonyms, etc (Meteor)



MT: Problems with BLEU
source: behaving as if you are among those whom we could not civilize

reference: uygarlatıramadıklarımızdanmı¸ssınızcasına

Languages with Rich Morphology: How dow we even evaluate this?

Solution: Use subwords, character-Fscore — chrF



MT: Human Evaluation

It is almost always better to ask humans!

e.g. in MT, we ask translators

Way 1:

We show system outputs to  
the annotators, and they provide 
a score (e.g. 1-5 Likert scale, 
or 0-100 score)

Way 2:

We show 2 system outputs to  
the annotators, and they annotate

which one of the two they think is 

better.



29Evaluation of Evaluation Metrics

• Automatic metrics are low cost, tunable, consistent

• But are they correct?

! Yes, if they correlate with human judgement

Philipp Koehn Machine Translation: Evaluation 17 September 2024



32Evidence of Shortcomings of Automatic Metrics

Post-edited output vs. statistical systems (NIST 2005)
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33Evidence of Shortcomings of Automatic Metrics

Rule-based vs. statistical systems
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35WMT Metrics Shared Task

(WMT 2023)

• Annual event to evaluate metrics

• Piggy-backs on the WMT General Translation Task

– new test set every year
– research systems and commercial systems
– lately also large language models
– human evaluation of automatic evaluations

• New metrics proposed

• Evaluation by correlation with human judgments

Philipp Koehn Machine Translation: Evaluation 17 September 2024



36Trained Metrics: COMET

• Two decades of evaluation campaigns for machine translation metrics
! a lot of human judgment data

• Goal: automatic metric that correlates with human judgment

• Make it a machine learning problem

– input: machine translation, reference translation
– output: human annotation score

• COMET: Trained neural model for evaluation

Philipp Koehn Machine Translation: Evaluation 17 September 2024



37Reference-Free Evaluation

• We have data in the form

input, translation, human reference ! human judgment

• We can also train a model on

input, translation ! human judgment

• CometKiwi: trained evaluation model without references

• Also called quality estimation or confidence estimation

Philipp Koehn Machine Translation: Evaluation 17 September 2024



Semisupervised and 
Unsupervised Methods
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On Using Monolingual Corpora in Neural 
Machine Translation (Gulcehre et al. 2015)

English FrenchParallel

Monolingual

Train NMT

French Train LM

Combine the two!

MTef

LMf
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English FrenchParallel

Monolingual English

Train French->English

French

Back-Translate  
Monolingual data

Train English->French

MTfe
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Dual Learning  
(He et al. 2016)

English FrenchParallel

Monolingual English French

MTef

MTfe

LMe LMf

Assume MTef, MTfe, LMe, LMf

Game:
Translate sample with MTef

Translate sample with MTfe

Get reward with LMf

Get reward with LMe
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Semi-Supervised Learning for MT 
(Cheng et al. 2016)

English FrenchParallel

Monolingual English French

MTef

MTfe

MTef

MTfe

Round-trip translation for 
supervision

Translate e to f’ with MTef

Translate f’ to e’ with MTfe

Loss from e and e’
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Another idea: use monolingual data 
to pretrain model components

English FrenchParallel

Monolingual English French

LMe LMf

Use the monolingual data 
to train the encoder 
    and the decoder.
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From "Unsupervised Pretraining for Sequence to Sequence Learning", Ramachadran et al. 2017.

Shaded regions are pre-trained
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… at the core of it all: 

decipherment

French

English French

Weaver (1955): This is really English, encrypted in some strange symbols 

From "Deciphering Foreign Language", Ravi and Knight 2011.
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(Lample et al. and Artetxe et al. 2018)

English

French
MTef

MTfe

LMe

LMf
English

French

1. Embeddings + Unsup. BLI

2. BLI —> Word Translations

3. Train MTfe and MTef systems 

4. Meanwhile, use unsupervised 
    objectives (denoising LM)

French

English

French

English

5. Iterate
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Neural Machine Translation went from a fringe research 
activity in 2014 to the leading standard method in 2016
• 2014: First seq2seq paper published
• 2016: Google Translate switches from SMT to NMT
• This is amazing!
• SMT systems, built by hundreds of engineers over many 

years, outperformed by NMT systems trained by a 
handful of engineers in a few months

NMT: the biggest success 
story of NLP Deep Learning
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• Nope!
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• Nope!

• Uninterpretable systems do strange things

So is Machine Translation 
solved?


