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https://towardsdatascience.com/beginners-guide-to-speech-analysis-4690ca7a7c05

What you have heard so far:

+ Lecture 1: ML Fundamentals Linear Classifiers and Neural Networks

» Linear Classifiers

» Non-Linear Classifiers

» Feedforward Neural Network

» CNN

> Feature Representations

> Sparse binary features

Linear Classifier

» Continuous dense features
(word2vec, embedding layers)

Ryan McDonald (ASAPP) Classification AthNLP 2024



How to deal with
sequences?



Today’s roadmap

> Part I: Fundamentals

> Intro, Motivation & Short History

> Language Models (n-grams, FFNN-LM, Recap: FFNN)
> Part Il: Representations & Beyond FFNN

> RNNs (GRU/LSTMs), Attention

> Contextualised Representations (ELMo)

> Part 1ll: Transformer & LLMs

> The Transformer, Masked LMs (BERT), Pre-training & Fine-tuning

>~ Prompting, LLMs & Caution



Before we start

www.menti.com - Code 2727 6277



http://www.menti.com

Fundamentals



NLP today: LLMs everywhere!

Src: DALL-E3



LLMs: In Recent NLP Research

Proportion of ACL conference paper titles with
“language model | [Im | prompting | instruction”




Encoder-decoder models

general family of models

output
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A step back...
How did the field evolve?




NLP ' Machine Learning

X: the dog barks

Symbolic Statistical
Processing NLP

tag=NOUN

e.g. BrIll’S

rule-based from e.g. Collin’s
tagger (1992)  hand-crafted structured

ELIZA rules to ML perceptron (2002)
(1966) X |1]of|l.lo|l1]0

A A

w_i=dog w_i-1=the

classic sparse n-hot encodings

approx. 1980s

1f prev. w = DET and ..
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The emergence of
deep learning (in NLP)



In Speech Recognition

T

Loud and clear

Speech-recognition word-error rate, selected benchmarks, % Log scale
100

Switchboard

Switchboard cellular
O——C Meeting speech

Broadcast
speech

IBM, Switchboard

10

&s0ft, Switchboard

The Switchboard corpus is a collection of recorded
telephone conversations widely used to train and
test speech-recognition systems

| | | | | | | | | | | | | | | | | | | | |

1993 06 98 2000 02 04 06 08 10 12 14 16
Sources: Microsoft; research papers

(Source: The Economist) 2 01 O i
Vg
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In Computer Vision

The Image Classification Challenge:
1,000 object classes

Classification error

,,m*,.i* &qﬁ. e
.‘ L Y

-.v-.al

'&‘3':, S T ""',Sf,"' < | - . Russakovsky et al IJCV 2015

(src: slide by Fei-Fei Li) 2 O _I 2 dihinhh
V4




2023-today: < Explosion of LLMs

2018-today: Pre-training - from BERTs to GPTs O

/1

N ./ 2022: ChatGPT
to the public

2007-2017: representation
learning & DL: word2vec, NNs |
1966: Weizenbaum ® from RNN/CNN to Transformer s
develops ELIZA at Y T
MIT O
1st “Al winter” 2nd “Al winter”
018 2018: “Multi-task
. | : ”
- "3rd time NNs have =arning wave
\ threatened a revolution
but only the 1st time
p

2015: DL

Golden Years for MT "Teunami hit NLP"

(Georgetown Exp.)

they have delivered”

Epoch 3: Deep Learning (DL) for NLP

1960 1970 1980 1990 2000 2010 2020

16



NLP ' Deep Learning

Symbolic
Processing

from
hand-crafted
rules to ML

approx. 1980s

NLP

Statistical

representation
learning

dog: [0.2

0.1

0.2

0.3

0.1

barks: [0.1

0.3

0.3

0.1

0.2

Epoch 3

2015
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Back to the roots:
(traditional)
Language Models (LMs)



Predicting the next word:
A Simple (?) Exercise

» www.mentimeter.com
Room: (see code)

* (title inspired by Graham Neubig)

19


http://www.mentimeter.com

You probably use a LM every day...

what is the mo

Q)

what is the mo - Google Search

what is the most spoken language in the world
what is the most played game in the world
what is the most dangerous animal in the world

what is the most expensive car in the world

L0 0 0 L0 L0

what is the moon made of

20


http://www.personal.psu.edu/ejp10/blogs/tlt/2011/09/understanding-speech-recogniti.html

More examples

> .. Iis perhaps the best 4

https://books.google.com/

Is perhaps the best known

IS perhaps the best example

Is perhaps the best way
Is perhaps the best of
Is perhaps the best place

Is perhaps the best and
IS perhaps the best In

Is perhaps the best method
Is perhaps the best that
Is perhaps the best for

1860 1880 1900 1920 1940 1960 1980 2000

—



https://books.google.com/ngrams

S0 let’s look deeper at LMs: from
traditional LMs over neural LMs
to contextualized embeddings



What is a Language Model (LM)?

> A computational model that can be used for either of the following two tasks is called a
Language Model (LM):

> to compute the probability of a text*

P(today is a great day) = ??
> to compute the probability of the next word

P(day|today is a great) = ??

* (can be a text, sentence, phrase,...)

23



A Language Model - Formally

> Given a sequence of words: Wy ooy W)
> An LM models the probability: P(wy, ...,w,)

> Without loss of generality (Chain Rule):

Pwy,...,w;)) = Pw)Pw, | w)Pwy|w;,w,)...

conditioned on full history

i 5 - . J 4 - i g 52 J TS Te i o ali . s e g g2 e N4l il i :
SRR NS NP PSRN - S A -SSP e A PPl AL R R AR NS AR -SSR -
) = ] = 5

.
o )
9
[ )
g
e o o o i e b Cou B Lo Mg o iocP T A AT E b fog Rl Lo poaaa P TE B W P B R R e LA B QU IS X g VIR B SR TN ST R L T TSN
- = e B oA - ~_ \ - ~_ - =
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Markov assumption

> However, finding good estimates for the probabilities of longer sequences is a problem

> Therefore, a common assumption in a traditional LM is to make the Markov assumption:

d d
P, o) = [ [Pl )~ [[PGIR i
i=1 e pn—l

p(w) =p(w1)X |
Markov: forget “distant” past
P(’w2 ’wl) X
p(ws | &, ws) X Valid for language? No...
Is it practical? Often.
p(’UJ4 Sbioppiblss-, w3) X

n-th order Markov assumption:
Only look at history of most recent n-1 words

-> N-grams
Adapted from Chris Dyer



How to learn the parameters of an n-gram LM?

> (Pre-deep learning LMs): Learn a count-based n-gram (traditional) Language Model by
collecting statistics of n-grams from a corpus to estimate the parameters of the model

(maximum likelihood)

> n-gram: a chunk of consecutive words

- Example: n=2 (bigram):  P(x;|x;_;)

Collect statistics for “to buy”, “buy a”, “a house”.... with C=count():
C(to w)
P(w|to) =
C(to)

~ Higher order n-grams, e.g. trigram LM: P(x; | x,_,,x;_)

26



Unigram LM (1storder)

> n=1, Tst order Markov assumption, history (n-1): O

Pwy,...,wy) = P(w))P(w,)P(wy)...
d
=[[Pov)
i=1

unigram LM

1 =0

Sampling from the unigram LM:
repeat
i+ +

m
x; ~ p(X)
P(

until x, = STOP W)
return (x;, ..., X;)

network cat beer weather city water




Bigram Language Model

> n=2, 2nd order Markov assumption, history (n-1): 1

Pwy,...,w;) = P(w)P(w, | w)P(wz|w,)...

d
= P(w;) H Pw,|w;_)
i=2

P(center | city) bigram LM

P(w|w-1) -
|
]

network cat beer weather city water

23



Sparsity problems with n-gram LMs

—

| Sparsity problem 1: If “its water is so w” §
! never occurred in the corpus: prob for w }
| (and entire sequence) is 0! !

What can we do? Smoothing
(add small count to estimates)

C(its water is so w)
C(its water Is soO)

P(w|its water Is so) =

What can we do? Backoff
(condition on lower-level n-grams)

Sparsity problem 2: If “its water is so0”
never occurred: prob forany w is is 0.

gt = - e - - B P PEC - PR - _ _ o
7 - - IO S o (0Zr Vo G > A~ en . m - e e S oy 0 o g PO O By )2 N T - - TN Y o 0 g N B P g o P T e o g e 0 2 P

C=count|()

In general: Increasing n-gram size makes sparsity problem worse.

g amg. PPN o o 4 — e e Lo o ¢ e n PR SRy L o L e p B P> Sy e e - - g B st R — - g - SRS B e Y KSEY
— el - ez - e - =" A2 o > - E= i - = - = =47 5 e Nen B¢ S e ) % O e ; Sa— Shaal - 23 R Sa—

o =~ N . - 5 _ _ =~

See for more details chapter 3 of Jurafsky & Martin’s textbook. Adapted from Abigail See



http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf

Smoothing

Intuition

e Estimating statistics from
sparse data

* Smoothing relocates
probability mass to make
generalization better

P(w | denied the)

3 allegations
2 reports

1 claims

1 request

/ total

(7)) (/)]
()] - —
> & %
S B <
N - ()]
O £ o
Smoothlng*
(/)]
S 0 0
- () (- N —4
> © 6 o
Q T B -
(&) i®)
|

P(w | denied the)

2.5 allegations
1.5 reports
0.5 claims

0.5 request

2 other

[ total

Adapted from Yoav Artzi




Smoothing

Add-one Estimation

e Pretend we saw each word one more time than we did
e SO0, just add one to all counts

- And don’t forget to adjust normalization properly

c(x;_1,X;) clx._1,x;)+ 1

p (x.‘x._): > _(x'lx'—):
MLEW; [ Ai—1 c(xi_;) PAdd-11il4i-1 c(x;_q) + |7 |

* Also called Laplace smoothing

Adapted from Yoav Artzi



Evaluating a LM



Evaluation
Testing

 How good is our LM?

* We must test the model on data it hasn’t seen during learning
- Otherwise — overfitting! €

* We need an evaluation metric — two options:

- Extrinsic: focused on however the model will be used — for
example, can it improve a transcription system?

- Intrinsic: focused on the language model task — how good can
the model assign probabilities to real unseen data?

» |deally, the two correlate, but reality is more complex

Adapted from Yoav Artzi



Intrinsic Evaluation

The Shannon Game

 How well can we predict the next word?

When | eat pizza, | wipe of the

Many children are allergic to

| saw a

 Unigrams are terrible at this game (why?)

grease
sauce
dust

mice

the

0,5
0,4
0,05
0,000

1E-100

* A better model of text is one which assigns a higher probability to

the word that actually occurs

Adapted from Yoav Artzi




Evaluation
Perplexity

* The best language model is the one the Is best at predicting the test set —
will give test sentences the highest probabillity

* Perplexity is the inverse probability of the test set, normalized by the
number of words:

- Given a set of test sentences D’ with a total of m words:

PP(D") = p(D)~" = (]| pG)~"""
xeD’
- In practice, we work in log space:

PP(D') = 2 Zser 1082 P

* Lower perplexity is better

Adapted from Yoav Artzi



Evaluation

Perplexity of a Uniform Model

Under a uniform distribution perplexity will be the vocabulary size

Assume M sentences consisting of m random digits, | 7| = 10

What is the perplexity of this data for a model that assigns

p(-) =1 to each digit

1 _
— 2—10g21—0 — 2—10g2 10~1 — 10

Perplexity is weighted equivalent branching factor

Adapted from Yoav Artzi



Evaluation

Perplexities of Contemporary Models

125

100
i Zaremba et al. (2014) - LSTM (large)
< 75
- Recurrent™highway networks
o
o AWD-LSTM + continuous cache pointer
=~ 50 GL-LWGC +AWD-MoS-LSTM + dynamic eval
vk
= GPT-2

25 GPT-3x(Zero-Shot)
0
2016 2018 2020 2022
Other models Models with lowest Test perplexity

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word Adapted from Yoav Artzi



https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

Further issues with n-gram LMs

> . . ? .~'-.—" 2 s N A N ) B P A R S 5T 3 t‘
What about similar words: | cannot share strength  §
- among similar words |

> she bought a bicycle

> she purchased a bicycle

> Long-distance dependencies?

~ for programming she yesterday purchased her own
brand new laptop

~ for running she yesterday purchased her brand new
sportswatch

Adapted from Graham Neubig
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Neural LMs




Neural Language Models

| Ms so far: count-based estimates of probabilities

- Counts are brittle and generalize poorly, so we added
smoothing

* The quantity that we are focused on estimating (e.g., for tri-gram
model):

n

px) = HP(Xi | X1, X;_0)

=1

 Can we use neural networks for this task? What would it give us?

40 Adapted from Yoav Artzi



Neural Language Models
A Very Simple Approach

* |nstead of having count-based distributions, we parameterize them

p(xi | Xi_1>5Xi_25 0)
 How would we model this with a neural network?

- Hint: so far, only learned about MLPs

41 Adapted from Yoav Artzi



Early Neural LMs (1/2)

> An early solution: a neural probabilistic language model (Bengio et al., 2000)

i-th output = P{w, = i | context)

| softmax
Q o8 )
T e A &

most | computation here

tanh

Clw—n)\ , _ Clw_g) Clw, 1)

: commputed only

e for wouds in
Table . . Manix C A short list
N l.“r‘!‘!"‘!?!r!vvf!#l"
ﬁﬂg‘up shased pauameters
: actoss woids

index for wy_g index for wy_» index for wy._

feed-forward neural network, n-grams with distributed representations



Neural Language Models
A Very Simple Approach

* A simple FFNN-ish model
px; =w|x;_i,x;._,; 0) = softmax(y),,
y = Utanh(We + by) + b,)
e = [P(x;i_); P(x;o)]

where ¢ is an embedding function, and 6 = (b,d, W, U, H, C, ¢)

* The parameters 9 are estimated by maximizing the log probability
of the data

* During inference, you compute the neural network every time you
need a value from the probability distribution

43

[Bengio et al. 2000]



Early Neural LMs (2/2)

> Another early solution: word2vec (Mikolov et al., 2013) models the probability of a word
given a context [See Ryan’s lecture 1 yesterday for details]; is a family of methods. Learn a
word embedding directly. Example: Skip-gram: ot ool oulad

w(t-2)

w(t-1)

w(t) >

w(t+1)

w(t+2)

A

feed-forward nel]ral network, skip-grams



Recap: Feed-forward
Neural Networks




Recap: A Feed-Forward Neural Network (FFNN) - Graphical View

fully-connected/dense

AL ...
AR

5 /"
@’\\‘/\

® A (dense / fully-connected) feed-forward neural network
* AKA a Multi-layer Perceptron (MLP)

Adapted from E. Bassignana



Hidden Layer Connections - Notation

f: R’ - R”
o

O \\\ > /.
h; = 6(Wih;_; + b)) S O

A\‘.‘ \‘}u 2 (lll;
XX YL

§“‘ “0» 4)\
Inputs: h._ ‘}‘:A A: A‘WA\
. . \ WY, v/,
Wi E RDZXDZ—I ':‘0 40\» (% ‘/' <
l’/ ~ \\\ &

: ‘ll‘, 7
bi - RD’ Q "/',> «\\» “
1264 \\\ S

*"II \\‘\\\'

O; Layer’s non-linear activation function . /’ ‘\\\ .

hi e R?  Hidden layer with D; dimensions, e.g. R’

Outputs: h,

47



Feed-Forward Neural Network - Functional Application View

y = h({i(x))

y O
h4 Q09

43



Feed-Forward Neural Network - Algebraic View

= ,(f1(x))
= 0,(W,(6; (WX + bl)) + bz)

ol

49



Feed-Forward Neural Network - Computational Graph View

GZ(WZ(GI (WIX 1 bl)) + bz) parameters
Q functions

What is x?

50



Recap: Input layer as Embedding Layer

(OOOOO:\
Q0000
00000

work ——{OOO0QO|

\[oo'ooo]J

® Input is a word ¢ € RP forall x € V

® We store these in a [V| x D look up table

® These are the model word embeddings
® AKA embedding layer; word look-up table; ...

Ryan McDonald (ASAPP) Classification AthNLP 2024


http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf

Recap: One-hot encoding

> Sparse high-dimensional vector of dimension |V| (=size of vocabulary)

Symbol (word, char,..) yellow

one-hot vector
(length V, one entry is 1) 0000 ..000...00

1x|V]

52



Lookup: Representing a symbol

linear projection from V->d
symbol — one-hot »  word embedding

book O@OO . OO) x

e
- .
.......
L .
-----
------
-----
...........
-----------------------------
---------
----------------

sparse binary one-hot,
high-dimensional (V)

dense, continuous
representation
low-dimensional (d)

embedding matrix

Adapted from LeCture 5 (Rledel) http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf

53


http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf
http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf

Computational Graph View

v loss

parameters
@ Q functions

Embedding layer is trained with the network

@ @ . (model parameters, lookup layer)
<-; \\

L\

)

'y

E b

N o
;\ \
Y
N ~ P ’
\‘ X : ‘ | 5
N s T 4 4
\ .
S, T s
= = = //
— = e -
—



Putting it all together: A window-based neural LM

books
l laptops
output distribution :
g = softmax(Uh + by) € RV - -
p R 200
U
hidden layer
Q00000000000
h = f(We bl) [ y Y ]
%%
concatenated word embeddings
), @), (). (4 (0000 0000 0000 0000]
€ = [e ) € ) € ) € ] AN AN AN AN
E
words / one-hot vectors the students  opened their
w(l), 33(2), :13(3), 7 (4) (1) 7 (2) 2 (3) r(4)

Ad a pted fro m Ab | g a| I See http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf


http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf
http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf

Window-based neural LM via FFNN

i

predict!

predict!
L @ T

-As-teciockfang the students opened-the books

discard e hooks

fixed window of n words |

laptops

'

o 4
vl

A yiele

56


http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf

Training the Neural FFNN-based LM

> |teratively move the n-gram window through a very large corpus to predict the next word at
each time step

books

laptops
> Cross-entropy loss (negative log-likelihood): output distribution Mﬂ

y = softmax(Uh + by) € RV

d Z0O0

U
L — lng(W ‘W o o W ) hidden layer
t1 -1 t—n+1 he {(We+by) (000000000000]
|14
> Note: typically very large vocabulary (softmax) gl W g (0000 0000 0000 0000)

> Workaround: negative sampling (lecture 1) ] T T [
words / one-hot vectors the students  opened their
2D 2 23) @ (1) +(2) +(3) (4

57



Does a neural FFNN-LM solve these 1ssues?

> Can it handle similar words?
> she bought a bicycle J
> she purchased a bicycle

> Long-distance dependencies?

> for programming she yesterday purchased her own brand new laptop

> for running she yesterday purchased her brand new sportswatch

58



Neural Language Models
An MLP with No Markov Assumption

* Without the Markov assumption, the model is
p(x) = Hp(xl—\xl, s X 1)
=1

 We need to model the parameterized distribution

pXiq x5 ..., x5 0)

 How can we do this with the tools we already know?

59



Neural Language Models
An MLP with No Markov Assumption

* We need to model the parameterized distribution
Py 1| Xgs -.nn X3 6)
 We can just treat the context as a bag of words
- Then it doesn’t matter how long it Is

- A very simple example (two layer MLP)

h = tanh(W'1 ¥ ¢(x;) + b')
p(Xi 1| xgs ..., x;) = softmax(W"h + b”)

60



Neural Language Models
An MLP with No Markov Assumption

 Why is this a terrible idea”

- Order matters a lot in language L.

> “1t was not , It was actually quiet

> “lt was not , It was actually quiet

- But it worked so well for text categorization ... &

- What may work for tasks that just require focusing on salient words (e.g., topic
categorization), is not sufficient for language models (i.e., next-word prediction)

61



FFNN: Any problems?

PROBLEM:

we need fixed input size!

Inputs Weigths

Weigthed
Sum

Activation
Function Output

G
|_|
Q
8000

lllustration by Elisa Bassignana.



FFNN: What is still missing?

PROBLEM:

it does not consider the order well

Inputs Weigths

Weigthed
Sum

Activation
Function Output

(%)
not @

actually
qulte

< e



Variable Length Inputs

> Feed-forward neural networks assume fixed-length inputs, but texts are not fixed lengths

the cat sits there
the sleepy cat sits there

the sleepy cat which chased the dog sits there

64



Dealing with Variable Length Inputs

> Options (1-3 covered in lecture 1):
(1) Truncate text length at fixed K

(2) Average embeddings (pooling)

65



Average embedding: Continuous Bag-of-words (CBOW)

Example input document:

ol T N = o — = e il

bag-of-words

Average embeddings (Similar to pooling operations in CNNSs)

this great

@@@@




Dealing with Variable Length Inputs

> More Options:

(3) Convolutional neural network (CNN)
illustration from last lecture by Ryan:

(4) Recurrent neural network (RNN)
covered next

<S0s>

The

steak

was

cooked

to

perfection f

<eos>

00000

Convolutional
Layer

00000

(0O@OO®| padding

Waibel et al. (1989) is often cited

as earliest example of a CNN

Pooling Layer

QOOO00]

Q0000

Q0000

Q0000

Q0000

Q0000

—_

>—[OOOOO}—{ MLP }@

POSITIVE

NEGATIVE

-~

O0000]

(e]elelele)

O0000]

k receptive field

(oo

filters

6/



Representations & Beyond
FFNNs



Today’s roadmap

> Part I: Fundamentals

> Intro, Motivation & Short History

> Language Models (n-grams, FFNN-LM, Recap: FFNN)
> Part Il: Representations & Beyond FFNN

Attention

'RNN

CRUSTV]
> Contextualised Representations (ELMo)

> Part 11I: Transformer & LLMs
> The Transformer, Masked LMs (BERT), Pre-training & Fine-tuning

>~ Prompting, LLMs & Caution

69






Recurrent Neural Networks (RNNs)

>~ RNNSs are a family of neural networks
> Very good at modelling sequential input of variable length
> Unlike CBOW, they model the order in the sequence

> Unlike vanilla CNNs, they can deal with long-distance dependencies (especially the gated
RNN variants)

> RNNs as LMs do not need to make the Markov assumption

/1



Recurrent Neural Networks (RNNs)

‘“vanilla” Neural Network RNN Key Idea:
n ! RNNs: the hidden state from
y=Vh+Db ; ‘
N @

Key difference:
recurrence link

/2



A closer look: inside an RNN layer

> We process a sequence x by applying a recurrence
formula at every time step t

> Critically, the does not impose a fixed-length input!

new state

B4R

function
parametrized by 6

previous state input

/3



Recurrent Neural Networks (RNNs)

RNN

. Yy = Vh, + b,

h = g(WXt + Uh 1 + bl)

.Q_ key rgv set of* ; {// )ﬁ? \
-

parameters 10 -
- Xt
connect hidden ( = ) : :

(Graphical illustration on right - from Jurafsky & Martin, SLP3)
/4



RNN - Step by Step

A family of recurrent NN architectures

h, = g(Wx, + Uh,_; + b;)

Output (sequence)

(optional) { y 1 }’2 y 3 y 4

h1 O h3 O
Hidden states

Input sequence { Xi /X9 X3 X4
(any length)

| love New York

Core idea:
Parameter
Sharing over

time

/5



The RNN abstraction

> Input sequence of vectors: xX1.5

- RNN(SO, Xl:n) consists of two functions:

~ Recurrence function [ consumes input and previous state

> Output function ) maps states to outputs

Yi

> Technically, there is a start

state: S

Si—1 —| R, O]— Si

* '
*
R
*
*
*
R
*
*
*

Xi

R
*
*
*
R
*
*
*
*
*
*
*

(Graphical illustration - from Yoav Goldberg’s primer, 2015)

/0


https://arxiv.org/abs/1510.00726

The RNN abstraction - More formally

RNN(SO,xlzn) =S1:ny Y1:n

Si = R(Si—la Xi)

R
*
*
*
R
*
*
*
*
*
*
*

(Graphical illustration - recursive - from Yoav Goldberg’s primer, 2015)



https://arxiv.org/abs/1510.00726

RNN: Unrolled over time

yi Y2 Y3 Ya ys

A A A A A
|""""" n""""': 1""""" u"""": n""""‘.
: y Sy ! , So ! , Sg ! , Sy ! I
I : | l I | I '
. . L___T___J . .

X1 X2 X3 X4 X5

V)

Figure 6: Graphical representation of an RNN (unrolled).

(Graphical illustration - recursive - from Yoav Goldberg’s primer, 2015)



https://arxiv.org/abs/1510.00726

Expansion at time step 4

sq =R(s3,X4)

S3
=R(R(s2,x3),X4)

S2

e N
:R(R(R(Sl, Xz), X3), X4)

S1
:R(R(R(R(So, Xl), Xg), X3), X4)

(Graphical illustration - recursive - from Yoav Goldberg’s primer, 2015)
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https://arxiv.org/abs/1510.00726

Training a RNN, parameter tying

Parameter tying: the
parameters are shared
across time steps.

¢ Derivatives accumulated.

i Pros: - reduce #params |
¢ - model arbitrary lengths {

P SE LA A a1 D T B cde WO\ T 2 B¢ Lo _posmn
Edas e > - Ao,

"
P
“
.
.
.
.
o
.
o
.

‘..---l-....
PL A ug,

.
. .
o* S
* *
D -
. .
. R
‘e *

.

- .
. .
. .
'l--l-.‘--l--l'
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* *
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?3

ll

?4

wnm
R
.
.
.
.

.
o e,

* *
R *
L] -
L o
" ..

0. *
“

] *
."'---.‘.---""

sum loss

graph, we can
backprop back

Backpropagation

through time (BPTT, Werbos, 1990).

Inspired by Chris Dyer’s lecture
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Recap: FFNN’s way

this 1s great !

One fixed input, e.g. average or sum:

gl

000

W

representation

CBOW(w,....w,) = ¥ Ew] (@O0

1 Lookup & sum

[Q.A.O]+[Q.AQO];[ QA.O +[..A.Q]

this IS great !



Recap: RNN’s way

1 Y R R R N ) =W o

Time step 1: /,\
ho 000 000

Lookup & process
each time step

this IS great !



1 Y R R R N ) =W o

Time step 1: ®
V
U
h, 00000
\%Y%
©00®

Lookup & process
each time step

this IS
X1 X2

great
X3

Recap: RNN’s way

X4



Recap: RNN’s way

1 Y R R R N ) =W o

Time step 2: ®
V /\
h, O0Q - Y U -+ Q0@
W
|
0000
Lookup & process :
each time step
this IS great !

X1 X2 X3 X4



Recap: RNN’s way

1 Y R R R N ) =W o

Time step 3:

O
V /A\
h, 000 r 00@® r 00 @ H“"’OOO
W
0 000)
Lookup & process ?
each time step
this IS great !

X1 X2 X3 X4



Recap: RNN’s way

this 1s great !

Time step 3:

ho 00® 000

Lookup & process
each time step

this IS great !
X1 X2 X3 X4



RNN: shared parameters

1 T = O T o =~ o

U
Unrolled sequence: .
OOO ............... ;OOO ............... ;OOO ............... ;OOO ............... >OOO
h, h, h, h; h,
this IS great !

X1 X2 X3 X4



RNN: h acting as "memory"

this 1s great !

0
Unrolled sequence: —

““/.' K,’ ;' \\A , ‘;», = T “W;

000 rQ00O© rQO @ .I?OO ............ L00Q/

h, h, h, 3
sentence or
“thought” vector
this IS great !

X1 X2 X3 X4



RNN Language Model



Next word

Loss

Training a RNN LM - Example

long

|

— lOg glongj

y

Softmax over ( &J:IJ]:D)

Vocabulary VhT

RNN

Input
Embeddings

and

i

— 10 and

(Lol J
T

So

thanks

|

— log @thanks

for

—Toc

(Lol J
T

>

long

i

for

(Lol J

T

and

all

|

~

— 10 all

(ol J
T

thanks

lllustration by Jurafsky & Martin

for



What about these issues?

» Can it handle similar words?

> she bought a bicycle

> she purchased a bicycle

> Long-distance dependencies!?
~ for programming she yesterday purchased her own brand new laptop

> for running she yesterday purchased her brand new sportswatch

However, in practice the vanilla RNN
has some trouble.. more soon
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RNNSs - Interim summary

> LM: a model that predicts the next word
> RNN: a family of neural networks
> to model sequential input of any length
> can optionally produce an output at each time step t (function O)

>~ RNNs are great as LMs. They can be used for much more:

92



Four Common Usage
Patterns of RNNs




An RNN as acceptor

A

> Use average of states to predict y

> Use last state only to predict y

Pooling of hidden states

7
88
100

94



Example: An RNN as encoder

> Use last state as encoding of the information in the sequence; use as “feature” in other NN

A

> encode, not predict

> E.g. character RNN

an
106

95



.
aun®
e
o
.
0

0..
Yy
]
.....

> predict an output
for each
time step t

> E.g. Tagging
(POS, NER)

lllustration adapted from Karpathy

fisennaa,,
.
g
Q * K3 .
D . K .
. PR .
. - )
% - .
. K " K
e 0 K O
03 - . *
. . 03 -
. . .
L9 o*
fre Y e -
" . asmmunt® [(EELLL]
N D D
o Q Q
B Q Q
B Q g
B Q g
o Q Q
N g Q
o g Q
o Q Q
B Q Q
o Q Q
o Q Q
B Q g
o Q g
B Q Q
. Q Q
o Q Q
o Q Q
o 0 Q
o K K
‘|||||||||||||||\ . .

many to many

total loss

>
.t
ws®
----
-----
N FT
0"
Q
Q

=
.....
3
»
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RNN as generator

one to many

A A A

> Conditioned generation

> E.g. image
caption generation,
speech synthesis

“straw” “hat” END

START “straw” “hat”

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes.

lllustration adapted from Karpathy



RNN encoder-decoder (seq2seq)

many to many
> Both input and output

R . . .

lllustration adapted from Karpathy

98



Deeper, better models?
Some more concepts




Only left to right?

The person who hunts ducks out on the weekends

... person who hunts ducks out

Example adapted from Rao & McMahan, 2018 https://en.wikipedia.org/wiki/Garden-path_sentence

100
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Bidirectional RNNs

.. person who hunts ducks out ..

f
h;

) _>_>_>_> )
) 4_ E 4_4_ )
b
hi)

h; = [h;; hy]

101



Stacked RNNs

> Multiple layers of RNNs, e.g., bi-RNNs

O TEXT

O
1
OOO OOO OOO

N

\QOO@ OO0 \QQ _

letter

102



Subword representations: Characters

PROPN VERB

OOO OOO

“ ‘
*
°, )
.
.
)
y
.
> .
.
.
. *
.
.
.
.
. .
.
.
)
.

Juli loves
<w> [0
C *able (98% ad;
d in WSJ)
€
S br* (85% noun
(Plank et al., 2016 for POS; </w> in Danish)

Ling et al., 2015 for NER)




Residual connections

> Training deep neural networks is difficult

> Solution: add direct “skip” connections (ResNet, residual connections),
proposed by He et al., (2015)

> j.e. add F(x) + x, instead of F(x)

> allows for training deeper models (in fact, is used in transformers as we will see)

weight layer
f(x) l relu .
weight layer identity

Figure 2. Residual learning: a building block. 104



https://arxiv.org/pdf/1512.03385.pdf

Gated RNN
architectures




A note on terminology

» RNN = “vanilla” RNN Ly
e

s ¥ VPR

> RNN flavors (=gated RNNs):

» ORU 9 and LSTMs (e

> Why? Problem of RNNs: Vanlshlng gradients!

106



Vanishing Gradient

> Gradients decrease as they are pushed back

dl
d,

0

—=tiny c%l,l —small g—i —med. g—:s —large
h, — RNN = h, =/ RNN > h, > RNN — h, | square_err
. ; ; ‘
X, X, X, y*
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Gated RNN architectures:
RNN flavors with a
separate memory




ht—l

Vanilla RNN unit

)A’t At each time step, the
I hidden state is updated:

softmax

*

ht — g(WXt + Uht—l + b)

tanh

Z ’ht

in a vanilla RNN

the hidden state Is

constantly being
rewritten

109



GRU (Gated recurrent Unit) - simplified

> Cho et al. (2014) - key idea: dynamic memory update ¢ (h=c)

> at every step t, consider overwriting candidate memory

candidate for overwriting cell

Yt ¢
T ¢ = tanh(U x, + W.c,_{ +b,)
softmax B
'd }/U = 0 (UUXt -+ WUct—l + bU) L
Knl tanh o)
¢ J‘ “choose which bits to update”
\.
¢=yyOCc+(l -1 Oc, ~—
X, update if gqamma_U > © T T use previous state

elemwenb—wise mu&iptwa&mn 10



GRU (Gated recurrent Unit) - full

> GRU: the full GRU has two gates:

Update gate: controls what parts

¢ = tanh(Ux, + W {rg Ole,_y) + b,)
]/U — G(UUXt —+ WUCt—l —+ bu)

}/R — G(URXt + WRCt—l + bR

¢ =wOC+ -y ©c 4

of the hidden state are updated vs \
preserved

Reset gate: controls what parts of the

previous hidden state are used to
compute new content

How does this help the vanishing gradient problem?
GRUs make it easier to retain info long-term (e.g. by not updating bits)

Slide inspired by Abigail See

"Learning Phrase Representations using RNN Encoder—Decoder for Statistical Machine Translation", Cho et al. 2014, https://arxiv.org/pdf/1406.1078v3 .pdf 111



LSTM (Long-Short Term Memory)

> Introduced by Hochreiter & Schmidhuber 1997
> Separate memory cell c and hidden state h
> Three gates:

> forget gate: controls what is kept and forgotten from previous
cell state

> Input gate: controls what part of the new cell content are written
to the cell

> output gate: controls what part of the new cell content are
written to the hidden state

112



LSTM (Long-Short Term Memory)

Write some new cell content

Forget some
cell content

Compute the
forget gate

Output some cell content
to the hidden state

Compute the @ Compute the
input gate new cell content

Neural Network Pointwise Vector
Layer Operation Transfer

O —>>->-<

Concatenate Copy

Slide by Abigail See

Compute the
output gate

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM (Long-Short Term Memory)

We have a sequence of inputs z*), and we will compute a sequence of hidden states ht)
and cell states ¢*). On timestep t:

Sigmoid function: all gate

Forget gate: controls what is kept vs values are between 0 and 1
forgotten, from previous cell state \

~

&® — tanh (Wch(t‘l) +U.2® + bc)

content from last cell state, and write \
c® = £(0) 5 ot=1) 4 5(0) o (0

(“input”) some new cell content

(1) — (t—1) (¢)

Input gate: controls what parts of the -f Y th T Ufw + bf -
new cell content are written to cell \ . 1 . <
i) =|o|(WihD + Uiz® + b;) >

Output gate: controls what parts of P
cell are output to hidden state ~ oY) =|g (Woh(t_l) + Uzt + bo) =
©

New cell content: this is the new . g
content to be written to the cell 'S
=

Q

Cell state: erase (“forget”) some S
Q

O

-

<

Hidden state: read (“output”) some | |, Rt — 5(t) 5 tanh c(® T

content from the cell
\ Gates are applied using




GRU vs LSTM

GRU is more efficient to learn (fewer parameters)

Which is better?

> No conclusive evidence that one is always superior to the other

LSTM is typically a good starting choice

Suggestion: switch to GRU if you want a more efficient model
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Interim summary

» RNNs:

~ Two fancy variants: LSTM and GRU 9
to address the vanishing gradient problem

> Other concepts:
Bidirectionality, Stacking, Residual connections

> Next concepts to cover:
> beyond static word embeddings

> gluing it all together: attention & contextualised representations

116



Today’s roadmap

> Part I: Fundamentals

> Intro, Motivation & Short History

> Language Models (n-grams, FFNN-LM, Recap: FFNN)
> Part Il: Representations & Beyond FFNN

- RNNs (GRU/LSTMs) {Attention |

> Contextualised Representations (ELMo)

> Part 1ll: Transformer & LLMs

> The Transformer, Masked LMs (BERT), Pre-training & Fine-tuning

>~ Prompting, LLMs & Caution

117



Attention? Attention!

Many thanks to Lilian Weng for an awesome tutorial (https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html) and
Graham Neubig’s NN for NLP class (http://www.phontron.com/class/nn4nlp2019/)



https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
http://www.phontron.com/class/nn4nlp2019/

Motivation: Encoder-decoder model
for Machine Translation (MT)

Decoder The movie is boring </s>

(target) 1t 1+ 1 1

argmax argmax argmax argmax argmax ‘

R RE
f 1 f

The movie is boring

—- g

\
/
]
i S - = = = A @ S = S - = (T S = = ) g - - = = (T = a = 2 - - X 7 =i = = - . %
v";_” I BT s o IR T D P S e B R B B IRV R N S O X N S 3 ) - TN Do Ao ) = o @ Arm
| e
3 == N
: —
‘: y \ ¥
t  Encoder / \
A:
Iy “3
i (source) —|O|—|O— |
‘ 1 ¥
/ /g
& n J
. b 74
' s J
) “ \\, P /
S x“l.r‘: g
i
19
/
B,

Der Film ist langwelilig ~‘:

g g g ah g e > a4 AT a2 L o ama o g p e o, Lo orsma e e iy o Ay =) a AN R e e psE e T i s A e 2 o L S )
== = = _ g2 AT 7 5 29 FA 4 3 E > B 2 2o o Aep 8¢ 2o R . gy b sBa 2 e ; 2 T U Pe i v 2 .

{ asingle $&!"ing

sentence vector
vector!



But: we’re cramming it all into..

The encoder compresses the sentence into a single fixed-size vector. This representation is
expected to be a good summary of the entire sentence.

Disadvantage: incapability of remembering longer sequences.

“You can’t cram the meaning of a of a whole % &!$ing sentence into a single $&!*ing
vector!” — Ray Mooney
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Beyond a single static “crammed” vector

> What if we use several vectors, based on the length of the input sequence?

> |ldea: when we generate the next word in MT, perhaps we can learn to attend to the relevant
source words

g

Encoder

IS

Encoder

IS

- 4 1?‘—-‘:-:;;:‘::‘_ V @ B e
o ol e

Dynamically look at all encoder hidden states

121



Attention: Core Idea

> When decoding, compare query to key vectors and perform a linear combination of the
encoded input vectors, weighted by “attention weights”

> |llustration at time step t:

> Pairwise comparison of each query-key pair
> Normalise score to weights

» (et new c¢
attention weights

f
\
0
|
N
\
NN
N\
\
S _
S
S
= -

L

—

h; ho

key vectors (Bahdanau et al., 2015)
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Calculating attention (1/2): .i
Attention weights o

1. For each query-key pair (q,k), calculate an attention score a; by attention function a

2. Normalize via softmax to get attention weights «

query vector

a1=.79 oa2=.11 a3=.05 x4=.03
softmax C * * * *
ai=2.1 a>=0.1 az=-0.5 as=-1.0

a((f, k a(qt k) a(qt k) a(qt k)

T
key vectors

hi hs hg hy

(Bahdanau et al., 2015)
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Calculating attention (1/2):
Attention weights o

3. Combine together value vectors via attention-weighted sum to get ¢t

. a1=.79 ao=.11 a3=.05 «14=.03
weights C A A \ A

value vectors

hi hs hg hy

(Bahdanau et al., 2015)
124



Attention with a FFNN/MLP
(Bahdanau, 2015)

n
Ci = g o i hy 1. For each query-key pair, calculate
— score a;
1=1 Cy I
2. Normalize via softmax to get weights
a(q, k) = vTtanh(W,[q; k]) 3. Combine together value vectors via

weighted sum to get ¢y

FFNN!(Bahdanau, 2015)

4. Use ¢t in your model

Different attention functions a
(e.g., Luong et al., 2015)

h; hy hs hy

a1=.79 oao=.11 a3=.05 4=.03 125



Different attention functions a()

Dot product (Luong et al., 2015)
- requires same size; but has no parameters

a(q,k) = q'k

Bilinear (Luong et al., 2015)
a(q, k) = "Wk

Scaled dot product (Vaswani et al., 2017)
- fixes problem of dot product that scale of dot product increases as dimensions get larger

T
q'k
a(q,K) = —

V/n

https://lilianweng.github.10/lil-10g/2018/06/24/attention-attention.html 126
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Recurrent Neural Network

| I 1 I | | Il
time step l 2 3 4 ) 6



Recurrent Neural Network
With Attention

ENCODER DECODER

| I 1 I | | 1
time step I 2 3 4 p 6



Recurrent Neural Network
With Attention

ENCODER DECODER

o

| I 1 1 | | 1
time step I 2 3 4 p 6



Recurrent Neural Network

With Attention
ENCODER DECODER
i —
am — good
\J )

| I 1 1 | | 1 I
fime step ] 2 3 4 ) 6 /



Recurrent Neural Network
With Attention

Encoder-Decoder Attention (aka Cross Attention)

ENCODER DECODER

am — good




A graphical example (Bahdanau, 2015)

1 A2 A3 A4

agreement
on

the
European
Economic
Area

Was
signed

N
August
1992
<end>

)
L
—

accord

sur

la

zone
économique
européenne
a

été

signé

en

aolt

1992

<end>

https://arxiv.org/pdf/1409.0473 pdf 132



https://arxiv.org/pdf/1409.0473.pdf

Enc-dec performance deteriorates rapidly

as input sentence length increases

30

Cho et al., (2014); Bahdanau et al. (2015)

29
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https://arxiv.org/pdi/1409.0473 .pdf

Sentence length
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> Attend to sentence itself (Cheng, Dong, Lapata, 2016) in contrast to cross attention (in

encoder-decoder)

Self Attention

Self Attention

The FBI 1s chasing a criminal on the run .

The
The
The
The

The
The
Thie
e
The

FBI
FBI

FBI
FBI
FBI
FBI
FBI

1S

18
1S
1S
1S

1S

FBI 1s chasing a criminal on the run .
BEBI 1s chasing a criminal on the run .

chasing a criminal on the run .

chasing
chasing
chasing
chasing
chasing

chasing

a criminal on the run .

a criminal on the run.

a criminal on the run.

a crimmnal em the run.
@ criminal em the run.

a criminal on the run .

https://arxiv.org/pdf/1601.06733.pdf
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Attention In image caption generation

> Salient parts of the image (e.g., Xu et at., 2015)

A woman is throwing a frisbee in a park.
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Today’s roadmap

> Part I: Fundamentals

> Intro, Motivation & Short History

> Language Models (n-grams, FFNN-LM, Recap: FFNN)
> Part Il: Representations & Beyond FFNN

> RNNS (GRU/LSTMS) Attentlon

> Part 11: Transformer & LLMs

The Transformer, Masked LMs (BERT), Pre-training & Fine-tuning

>~ Prompting, LLMs & Caution
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Introduction to

Contextualized Embeddings
(ELMo)

Welcome to the contextualised embeddings world

With thanks to Arianna Bisazza, Max Muller-Eberstein & Joris Baan for parts of the slides



Traditional (“static”)
word embeddings



I

They ordered a Danish IN Danish



What is missing?



I'd like to order a Danish in Danish.

Dani
Dani

No context

sh (noun): pastry typica

sh (noun): Scandinavian lar

{o

Denmark

guage spoken In

Denmark



ELMo: Embeddings from Language Models

> A seminal paper to start a new era of representations: contextualised embeddings
> Key Idea: Learn word token vectors (not type) using entire context
> Aka token embedding, which depends on surrounding context during use

> ELMo: Self-supervised, pre-trained, RNN-based

142



Our representations differ from traditional word type embeddings in

that each token is assigned a representation that is a function of the
entire input sentence.

[...] ELMo representations are deep |...]

— Peters et al. (2018)



From characters to token
embeddings




Embeddings from Language Models
ELMOducks = (M (@000))+ (A2[0000))+(As-(@009))

Convolutional Neural Network

REeEtee

(PAD]  [PAD] W 0 r d [PAD]  [PAD]

.. person who ducks out on
145



ELMo - Detalils

ELMo: every token is assigned a representation that is a function of the entire input sentence

(L=#stacked layers)

_)
(M WEM R EM =1, 1)

= {hi¥ ki |7=0,...,L},

Ry,

This gives 2L+1 representations - Which to use?

> Just the top layer (similar to TagLM; Peters et al., 2017)
> Include all L+1 layers, average

> All layers, weighted average (best)

ELMOtask (Rk;@task . taskz taskhLM
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Training ELMo




Language Modeling Objective

 Word2vec trains word by word
* Uses context during training
 No context during use
 ELLMo trains on word sequences
* Predict each token using its context
o Softmax layer applied to the top layer’s output

 Uses sequences as input during use



Danish

l
*
FFENN
4
biLSTM oE bILSTM E blLSTM i - blLSTM ¢ ﬂ blLSTM ¢ Eo biLSTM
f ? ? ‘.‘

4+

= E
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How to use ELMo for your task?

> Recipe: For a given instance
> Run biLM to get the representations for each word
> Concatenate ELMo embeddings into task-specific model, e.g.,
> as additional input to static word embeddings
> as additional hidden representation

> ... many choices, best might depend on end task
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Results over 6 NLP benchmarks q

Peters et al., NAACL 2018
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NLP Progress on NER

» From Ruder et al.’s 2019 NAACIL tutorial

CNN Large + fine-tune: 93.5

Flair embeddings: 93.09/
- — - BERT Large: 92.8

93 = -
BILSTM-CRF Y @ Cross-view
+ELM0:92.22 /7 B + Multi-Task:92.61
92 _TaglM:91.93 _—5" BERT Base: 92.4
Yang etaroTRe T
Ll Snd R, 2608 &z}&ngnﬁvgm_ 91.21 ’
Phrase & word clusters: 90.90 ———— ® LM-LSTM-CRF: 91.24
F1 'LSTM-CRF: 90.94
L
Chiu and Nichols 2015:90.69
90 @
Collobert et al. 2011: 89.59 Passos et al. 2014: 90.05
Ando and Zhang. 2005 ¢
89 co- and self-supervision: 89.31
Florian et al., 2003: 88.76
88 7/ F % 7/ % 7 — i % % # i % i i % i i % % i i i
Jun 03 Jun 05 Jun 09 Jun 11 Jun 12 Jun 13 Jun 14 Jun 15 Jun 16 Jun 17/ Jun 18 Jun 19

Performance on Named Entity Recognition (NER) on CoNLL-2003 (English) over time
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https://docs.google.com/presentation/d/1fIhGikFPnb7G5kr58OvYC3GN4io7MznnM0aAgadvJfc/edit#slide=id.g5888218f39_16_23

Is ELMo the first such model? No!

ELMo is deeper compared to an earlier model
by Peters et al., 2017 ACL (TagLM)

It doesn’t require parallel data (as an earlier model like CoVe does, by McCann et al., 2017
NeurlPS)

ELMo: state-of-the-art performance on 6 benchmarks in 2018
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Limits of RNNs?

ENCODER DECODER
’/ I — am \ good
<GO>
Embeddmg
how are you ?

time step ] 2 3 4 5 6 /



Transformer & LLMs



Today’s roadmap

> Part I: Fundamentals

> Intro, Motivation & Short History

> Language Models (n-grams, FFNN-LM, Recap: FFNN)
> Part Il: Representations & Beyond FFNN

> RNNs (GRU/LSTMs), Attention

Contextualised Representations (ELMo)

> Part III Transformer & LLMs

> Prompting, LLMs & Caution
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Transformers
A Revolution in NLP and ML




What’s next

e The Transformer
 High-level Architecture
1. Encoder

2. Decoder
3. Multi-Head (Self) Attention




FULLY ATTENTIONAL NETWORKS
(A.K.A. TRANSFORMER)



Core idea: Attention is All You Need (vaswani et al. 2017)

o Attention has major impact on seq2seq performance

e Recurrency is an obstacle to parallelization

=> Can we build a fully attentional seg2seq model without recurrency?

-0
=00 -0
- 0-00

=00 L
[

RN Transformer Slides by Arianna Bisazza
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The Transformer

Machine Translation

Ashish Vaswani*
Google Brain
avaswani@google.com

 “Transforms” one sequence into another Lion Jones

Google Research
1lion@google.com

 No convolutions, no recurrence (no time
steps), only attention

Noam Shazeer* Niki Parmar™ Jakob Uszkoreit*
Google Brain Google Research Google Research
noam@google.com nikip@google.com usz@google.com

Aidan N. Gomez* | Lukasz Kaiser*
University of Toronto Google Brain
aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin*
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best

| |
[ ) H h I p I I I bl performing models also connect the encoder and decoder through an attention
Ig y a ra e Iza e mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
mm
. be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
® C a pt u re I O n g ra n g e d e p e n d e n C I es to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,

our model establishes a new single-model state-of-the-art BLEU score of 41.0 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the

 Better quality

best models from the literature.



A scary beast
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TRANSFORMER ARCHITECTURE
OVERVIEW




Transformer Architecture Overview

ENC-layer 2
Self-

ENC-layer 1
Self-

Input word
embedding

[ 1] B
Attention \
[ 1] [ 1]
Attention
B B
machine translation is fun

ENCODER
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Transformer Architecture Overview

traduzione

ENC-layer 2

Self{Attention

ENC-layer 1

Input word
embedding

T

T

machine translation is fun

[EOS]

Self-Attention

| 4
Self-Attention

*

la

ENCODER

DECODER

DEC-layer 2

DEC-layer 1

Output word
embedding
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Transformer Architecture Overview
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Let’s take a closer look:

TRANSFORMER’S
BUILDING BLOCKS

Output
Probabilities

Linear

Add & Norm
Feed
Forward

\
( ~ Add & Norm

Add & Norm Multi-Head
Feed Attention
Forward N x
Nix I Add & Norm
Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
. 1 J .t
Yy, \_ Y,
Positional »‘ ,‘ Positional
Encoding U QS Encoding

Input
Embedding

Output
Embedding

Inputs Outputs
(shifted right)
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Scaled Dot-Product Attention

To compute attention we need a scoring function

o Dot-product is simple and fast to compute* score(g, k) = g, k;

o Rationale: measure similarity of two (word-)vectors

Problem: for high-dimensional vectors, softmax gets very peaked and gradients
small

.
q; ki
=> Solution: scale the result of dot product score(q,, ki) = \/C_i

-

machine translation is fun

*For a nice overview of different Attention Scoring Functions see:
https://towardsdatascience.com/attn-illustrated-attention-Sec4ad2’/6ee3#ba24 168



https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3#ba24

Query-Key-Value

Now, where do q and k come from? T
™M

We could simply use the word vector and compare it score(q, k) = Vd
to all vectors in the sentence (including itself)

compare(q2,kl)
=> score

ki ko(=q,) = ks ky

machine translation is fun
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Query-Key-Value

Now, where do g and k come from? Tk
. . k) = ——
We could simply use the word vector and compare it score(q, &) Vd
to all vectors in the sentence (including itself)
A better idea: Learn multiple ‘views’ of to use as query, key and value
compare(g2,kl)
=> Score

softmax(score) X value
R |

|
q1| kll‘Vf qz\ k2 V5 | \

machine translation is fun
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Self Attention in the Transformer

* [ransform each token representation to a learnable query, key, and value
vector

* Query vector “asks” all key vectors in the sequence whether they are
relevant. This results in attention scores.

 “Asking” is the dot product (similarity) between the query vector and key
vector

* New contextualised token representation after self-attention is the
weighted average over all value vectors in the sequence using attention
scores as weights



Query-Key-Value

Now, where do g and kK come from?

We could simply use the word vector and compare it to all vectors in
the sentence (including itself)
A better idea: Learn multiple ‘views’ of to use as query, key and value

compare(qg2,kl)
=> score
softmax(score) X value
¥ e : |

q kl\47Lr 9> ky v, I \

N Y S

machine translation is fun

Attention(Q, K, V) = Z = softmax(QK/ﬁ{)V



We are not done yet ...
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Multi-Head Attention

+ Intuition: Information from different
parts of the sentence can be useful to
disambiguate in different ways

syntax
(nearby context)

[ run a small business]

: _, semantics
m'un ajmilefin 10 minutes  (farther context)

Thejrobber made@run for it

Thejstocking] had|a]run

Output
Probabillities

Add & Norm

Feed
Forward

Add & Norm
|

Masked
Multi-Head
i | Attention )§

N X

Positional
Encoding

Input
Embedding

Inputs

Slide by Graham Neubig 174



Multi-Head Attention

Words can interact with each other in different ways.

One attention distribution may not be enough to capture: coreference effects,
topic cohesion, other syntactic/semantic relationships, etc.

Multi-Head gives the attention layer multiple representation subspaces

l _______ 1—rlj'£:l 1—|ﬁl - ﬂ—lﬁl TL | 1—|ﬁl — hehaejldz
o A A A |
g th iInput;
2 h1

concat machine translation s fun

Iintar

v

- Output of multi-headed attention for input; ... Finally!
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Multi-Head Attention

MultiHead(Q, K, V) = [head; ...; head,]W?
where head; = Attention(Qi, K., V)

= Attention(QWiQ, KW, vw!))

________________

= 20 nPut2
2 h1
concat machine translation

v

linear

v

- Output of multi-headed attention for input; ...

2 Positional

—
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Feed
Forward

N x

I
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i ity

Output
Probabilities
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Add & Norm
Feed
Forward
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Multi-Head
Attention
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Inputs
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Add & Norm
Masked
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as Encoding

Output
Embedding
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(shifted right)
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Multi-Head Attention

Example from Vaswani et al., 2017:

(7]
Rl
c c
Cg g
0
% -gE ® e s o 2 = D A AAAAA
- o O © O Q » = » c 2 o 37 T T U T T T
n = = = S S 8 32 o0 38 = = = 9 = O @ @0 ©® ® ® ©
= 6 8 ©, Eccdco2cSo82P, T LLE Ww aaoaoaoaa
= W € £ £ 0o E0AC D ac 8B s NELE P 6 5 a E© V V V V V V V
= PEE 255223328822 552¢ 58848444
= a s 5 ngwcmco;_*"z = @9 @ @ © © @ ©
) S = c 0 = % N © o ©O O 83 3aadaaa
© o £ g e = > O W v v v v VvV Vv
= EGE’ 0 ot v
3 :
)

Figure 3: An example of the attention mechanism following long-distance dependencies in the
encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of

the verb ‘making’, completing the phrase ‘making...more difficult’. Attentions here shown only for
the word ‘making’. Different colors represent different heads. Best viewed in color.
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Add & Norm

Last ingredients:

Output
 Residual connection (He et al. 2015) ¢(f(x)) — g(f(x) + f) Pfobatb"'t'es
[ Softmax

e Layer normalization (Ba, Kiros & Hinton) 1

i

Add & Norm

Feed
Forward
)
N
r ( ~ | Add & Norm Je=
20CISINOT Multi-Head
Feed Attention
Forward N x
L J
W iainist scimiais o Add & N
LayerNorm(SubLayer(x) + X) ey oo | | -ooZsiom
‘ Masked
I MUlti-Head Multi-Head
Attention Attention
& J U /)
Positional Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)
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Attention in the Decoder

We have looked at self-attention in the encoder —_—
utpu

Now moving to the decoder => 2 types of attention here: Probepites

| Softmax |

Masked Self Attention (Decoder only): Dnear

- captures target-side context ((Adds.Nom

- Feed
- same as before, but can only look at positions Forward

before the current word (masked) ) | (o gy

il

i

Self-Attention Masked Self-Attention :  - MUlti'Head , :
A ’ § Attenton B §

|
Add&Nor
l~ Masked
2 Multi-Head
A Attention ¥

Encoder—Decoder Attention: \
- captures src-trg translation equivalences >0 Eﬁgg';?g
- Query comes from target (decoder), [ e ]
Key & Value from source (encoder) f
Outputs

- also known as Cross Attention (shifted right)

179
Masked self-attention illustration from Artzi’s LM class.



Transformer Architecture Overview
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Are we missing anything?

N x
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Positional embeddings

Recurrency naturally represents the order of words in a sentence:

Output
w3 comes after w2 which comes after wi .. rroogolities
o , o | Softmax |
Transformer needs an explicit way to represent a word’s position : 1 ]
* |dea: let’'s mark positions (| \
Feed
* Learning will figure out what how to use them l Forward l
7 y
. Simple version: learnable embeddings ¢p(i) [ (AL & Nom ) ’ Ahjjljl::;“ r
where i € [0,1,2,..] (lookup parameters) el Attention w
L I T l ‘}_‘r—‘ y
* More advanced: fixed embeddings, where values N Add & Norm Je—~
) : : ' X | ~{ Add & Norm } 3
determined by sine waves, with different frequency = 1E2iGe
) ; ulti-Head Multi-Head
and offset of each dimensions ’ Attention l Attention

Either way, we add them to token embeddings

PosMonaIfj
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nput Output |
Embedding Embedding

I I
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Putting it altogether: Encoder-Decoder Transformer

Output Multi-head attention
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https://lilianweng.github.io/lil-10g/2018/06/24/attention-attention.html
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https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Transformer: Summary of Core Concepts

Attention:

~ Selt Attention

> Cross Attention (Encoder-Decoder Attention)
>~ Multi-Head Attention

» Masked Attention

Positional encodings

Residual connections + layer normalisation

Feed-forward layer
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Three Types of Transformers
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RECURRENT SEQ-TO-SEQ VS
TRANSFORMER



RNN-seq2seq vs Transformer

I W N R
L0 L)L
Tooo|co

RNN Transformer

v Much more parallelizable
= fast

v Lower complexity

v/ Shorter path among any
Input positions

e RNNs (esp. LSTM) are cognitively inspired: represent memory constraints

e Transformer = result of clever engineering & brute-force architecture search

e |t works! State of the art performance on almost every NLP task

e Will we go back to RNN-kind of models?
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Today’s roadmap

> Part I: Fundamentals

> Intro, Motivation & Short History

> Language Models (n-grams, FFNN-LM, Recap: FFNN)
> Part Il: Representations & Beyond FFNN

> RNNs (GRU/LSTMs), Attention

> Contextualised Representations (ELMo)

> Part 1ll: Transformer & LLMs

> The Transformer,iMasked LMs (BERT);

>~ Prompting, LLMs & Caution
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Masked LMs: The birth of BERT

 |LMs so far: predict the next token given the previous tokens

- This enables a self-supervised task

- That we can train on a lot of data to get really useful
representations

* Let’s create a prediction task by hiding part of the sequence, virtual
and then trying to predict them !
- Input: the sequence X! where some tokens are replaced with wasked Language Nodeling
the token [MASK], for example: I T

)_CM — <X1, coes XYy [MASK], Xy o Xn> | am a MASK Assistant

We thank the following sources for the materials on which slides on this section are based: Greg Durrett & Yoav Arzti
Image from https://www.holisticai.com/blog/from-transformer-architecture-to-prompt-engineering 189



BERT

Bidirectional Encoder Representations from Transformers

 Encoder transformer
- Encoders assume we have the complete sequence
- No generation, only want good representations (for analysis tasks)

« BERT Base: 12 transformer blocks, 768-dim word-piece tokens, 12
self-attention heads — 110M parameters

 BERT Large: 24 transformer blocks, 1024-dim word-piece tokens,
16 self-attention heads — 340M parameters

 RoBERTa: same model, much more data (160GB of data instead of
16GB)

190
[Devlin et al. 2018]



BERT

Inputs

* One or two sentences
- Word-piece token embeddings

- Position and segment embeddings

Input ‘ [CLS] \ ‘ my \ (dog 1 ( is W( cute W( [SEP] 1 ( he M likes W play 1 ( ##ing W( [SEP] 1

Token

Embeddings E[CLS] Emy Edog Eis Ecute E[SEP] Ehe EIikes EpIay E##ing E[SEP]
e e e e = e L e e e L

Segment

Embeddings EA EA EA EA EA EA EB EB EB EB EB
e e e e e e e e e e e

Position

Embeddings Eo E1 Ez E3 E4 E5 E6 E7 E8 E9 ElO

191
[figure from Devlin et al. 2018]



BERT

Training

* Data: raw text
* [wo objectives:
- Masked LM
- Next-sentence prediction
» | ater development in RoBERTa:

- More data, no next-sentence prediction, dynamic masking
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BERT

Masking Recipe for Training

 Mask and predict 15% of the tokens
- For 80% (of 15%) replace with the input token with [MASK]
- For 10%, replace with a random token

- For 10%, keep the same
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BERT

Next-sentence Prediction

* |nput: [CLS] Text chunk 1 [SEP] Text chunk 2

* Training data: 50% of the time, take the true next chunk of text,
50% of the time take a random other chunk

e Predict whether the next chunk is the true next chunk

* Prediction is done on the [CLS] output representation
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BERT

What Do We Get?

 We can feed complete sentences to BERT
 For each token, we get a contextualized token representation

- Similar to ELMo, but without an RNN/LSTM

- In contrast to word2vec representations that are fixed and do
not depend on context

 While word2vec vectors are forced to mix multiple senses, BERT/
ELMo can provide more instance-specific vectors

« BERT started an arms race towards bigger and bigger models,
which quickly led to the LLMs of today
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BERT

What It Is Not Great For?

« BERT cannot generate text

- Not an autoregressive model, but can do filling of [ MASK]

 Masked language models are intended to be used primarily for
“analysis” tasks
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BERT

What does BERT Learn?

* There is a lot of work trying to decipher what BERT learns in its representations

- Much harder with recent LLMs because they are not as open
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BERT

Some interesting results

- BERT rediscovers the classical NLP pipeline - Spectral profiles
(Tenney et al., 2019) (MUller-Eberstein et al., 2022)
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Today’s roadmap

> Part I: Fundamentals

> Intro, Motivation & Short History

> Language Models (n-grams, FFNN-LM, Recap: FFNN)
> Part Il: Representations & Beyond FFNN

> RNNs (GRU/LSTMs), Attention

> Contextualised Representations (ELMo)
» Part 1lI: Transformer & LLMs
» The Transformer, Masked LMs (BERT), ’

>~ Prompting, LLMs & Caution
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Pre-training & Fine-tuning



Pre-train / Fine-tune / Transfer Paradigm

> 2018-2021: LMs as text encoders (the quest of better word representations)

Fine-tuning: Transfer:

. . label . predicted label
A

A
“task-specific layer” :

Network Network

Network

-> task-specific text input text input in e.g. another language or domain
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In NLP we have a plethora of tasks

> Each NLP tasks requires different kinds of data:

> Language Modeling: only text

> Machine translation: naturally occurring parallel (translated) data

> Analysis tasks: (from classification like sentiment analysis to structured prediction tasks like
NER, semantic parsing or slot and intent detection:

hand-labeled data

Slide inspired by Graham Neubig 202



The shift to text-to-text transformers

(Standard) Multi-task larning: Text-to-text format:

. . task label output DDD—D everything as text output
\/‘task-speciﬁc layers” not task specific

rk rk

Architecture is unified
across tasks with
text-to-text
natural text instructions

- -

text input text input

> 2019: from task-specific training/architectures to uniform text-to-text formats

> General knowledge (pre-training) +instruction fine-tuning => Generalisation to new tasks 203



Instruction Fine-tuned LMs

> Learn many tasks in a single system (e.g. T5 Raffel et al., 2019): examples with instructions
» Massive Multi-Task learning (in text-to-text format)

> = General knowledge (pre-training) + ability to follow instructions (instruction fine-tuning)

"translate English to German: That is good."
"“cola sentence: The
course is jumping well."
"stsb sentencel: The rhino grazed
on the grass. sentence2: A rhino Learn from many tasks

is grazing in a field."

"summarize: state authorities "six people hospitalized after

dispatched emergency crews tuesday to a storm in attala county.”
survey the damage after an onslaught
of severe weather in mississippi.."

https://arxiv.org/pdf/1910.10683



T5 / encoder-decoder models

Takeaways

15 (and BART) are very useful for all sorts of sequence-to-
sequence tasks with language

- T5 comes Iin different sizes
- There are various customization (e.g., CodeT5)

 Extended the generalizations conclusions from BERT, and
demonstrated the impact of data scale
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Today’s roadmap

> Part I: Fundamentals

> Intro, Motivation & Short History

> Language Models (n-grams, FFNN-LM, Recap: FFNN)
> Part Il: Representations & Beyond FFNN

> RNNs (GRU/LSTMs), Attention

> Contextualised Representations (ELMo)

> Part 1ll: Transformer & LLMs

> The Transformer, Masked LMs (BERT), Pre-training & Fine-tuning

iPrompting, LLMs & Caution}
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Prompting

We thank the following sources for the materials on which slides on this section are based: Greg Durrett & Yoav Arzi
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A way to control LLMs: Prompting

> LLMs offer a completely new
mode of operation that does not
require any change to their
parameters: prompting

> Prompt = Instruction given to
the LLM

> Adapting the instructions to get
different responses:

> change the prompt (style)

) Give me ideas for a tandem talK

Sure, here are some engaging tandem talk ideas suitable for various contexts

such as conferences, educational settings, or informal gatherings:

Give me ideas for a tandem talk. Please answer like

writing to the queen

Your Majesty,

It is with the greatest respect and honor that | present to you several refined
and engaging ideas for a tandem talk, worthy of the highest echelons of
discourse. These topics, carefully chosen for their relevance and profundity, are
designed to illuminate and inspire, reflecting the grandeur of your esteemed

gatherings.

1. The Renaissance of Technology and Human Values i



Types of Prompting

> Zero-shot prompting (no examples)

> One-shot, Few-shot prompting (with
one or few annotated examples)

> Chain-of-thought (CoT) Prompting
and extensions thereof (asking for
intermediate reasoning steps)

Example:
- Review: | was intrigued by the final scene despite thinking the
' opposite at the start.

é Rating: 4

Please rate the following move review from 1to 5 (1=did not

like it, 5=liked it very much).

— o e a2 s o /alr Ve G > o e - E o i (0Zs 9 g =y la- O oy . — e e T o e el v o ——

for Al iy 57 8 e d st B L BARA o~ - 2 gD it o X, te Bd- Lo _fsBs
it ERnEt— - 7] - AR

Review: Despite the terrible soundtrack, Smith delivered a

thoughtful agent.
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Zero-shot Prompting

x = the movie’s acting could’ve been
better, but the visuals and directing

* Input: single unlabeled example x were top-notch.

* Output: the label y *

* The task (and output) can be any v(x) = Review: the movie’s acting
text-to-text task: Classification, could’ve been better, but the visuals

summarization, translation and directing were top-notch.
’ Out of positive, negative, or neutral

this review iIs

* Pre-processing: wrap x with a
template using a verbalizer v *

* The template controls the output

v

<1

o1 neutral




In-context Learning (ICL)

* LLMs have the ability to “learn” to
complete tasks through training in
the prompt

* The recipe is simple;

- Take a small number of annotated
training example {Y, O},

- Convert them using verbalizer v
templates

- Concatenate them and follow with
the target input x

- The completion will be the label of
the input

211

x = the movie’s acting could’ve been
better, but the visuals and directing

were top-notch.

Review: The cinematography was stellar; great movie!
Sentiment (positive or negative): positive

Review: The plot was boring and the visuals were
subpar.

Sentiment (positive or negative): negative

Review: The movie’s acting could’ve been better, but the
visuals and directing were top-notch.

Sentiment (positive or negative):

v

v

<1

positive




In-context Learning (ICL)

Performance

* Providing ICL examples almost always leads to significant
Improvements

100 Aggregate Performance Across Benchmarks

Few Shot
—eo— (One Shot
80 —e— Zero Shot

Accuracy
(@)]
o

NN
o

20

O -
0.1B 04B 0.8B 1.3B 2.6B 6.7B 13B 175B
Parameters in LM (Billions)

Figure 1.3: Aggregate performance for all 42 accuracy-denominated benchmarks While zero-shot performance
improves steadily with model size, few-shot performance increases more rapidly, demonstrating that larger models are
more proficient at in-context learning. See Figure 3.8 for a more detailed analysis on SuperGLUE, a standard NLP
benchmark suite.
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https://arxiv.org/abs/2005.14165

In-context Learning (ICL)

Performance

* Providing ICL examples almost always leads to significant
Improvements

* Benefits tend to diminish with more examples

—8— Anthropic-LM v4-s3 (52B) —0— TOpp (11B) —8— GPT-NeoX (20B) OPT (175B) GLM (1308B)
BLOOM (176B) —8— GPT-) (6B) —o— T5 (11B) —&— OPT (66B) YaLM (100B)
NaturalQuestions (open-book) CNN/DailyMail IMDB CivilComments
1.0
0.7 O— —.———. [ P o—@ 0.6
0.15 \ =% ——e y
0.6 0.8
) gt a4 0.4
N .
05 1 o8 4010 8 0.6
n 0 ,\ 2 7
0.4 2 0.4 ,
' N 0.2
0.2 W, ‘
0.00 0.0 0.0
0 1 2 4 8 16 0 1 2 4 8 16 0 1 2 4 8 16 0 1 2 4 8 16
#in-context examples #in-context examples #in-context examples #in-context examples

Figure 32: Number of in-context examples. For each model, we set the maximum number of in-context
examples to [0, 1, 2, 4, 8, 16] and fit as many in-context examples as possible within the context window.
We plot performance as a function of the average number of in-context examples actually used.
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https://arxiv.org/abs/2211.09110

Chaln of- Thought (CoT) Prompting - Example

> Addmg "Let S thlnk step by step

prams

Sure, let's break this down step by step to come up with some compelling tandem talk ideas:

Step 1: Identify the Audience and Purpose

Understanding who will be listening to the talk and what you aim to achieve is crucial. Is the
audience academic, corporate, students, or a general public? Is the purpose to inform, entertain,

persuade, or inspire?

Step 2: Choose a Broad Topic
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CoT Prompting Example

» Standard Prompt > CoT ("Reasoning steps’):

what is the size of the big lake closest to Verona. Let's

think step by step

what is the size of the big lake closest to Verona ®  To determine the size of the largest lake closest to Verona, we need to follow

these steps:

®  The largest lake closest to Verona is Lake Garda (Lago di Garda). Lake Garda is 1. Identify the major lakes near Verona:
the largest lake in Italy, covering an area of approximately 370 square kilometers
(143 square miles). It is situated about 30 kilometers (19 miles) west of Verona, * Lake Garda
making it easily accessible for a day trip or a short visit from the city. e Lake Iseo

e Lake Como
2. Determine the distances from Verona to these lakes:

e Lake Garda: About 30 km west of Verona
e Lake Iseo: About 90 km northwest of Verona

e Lake Como: About 130 km northwest of Verona
3. Compare the sizes of these lakes:

e Lake Garda: 370 square kilometers
e Lake Iseo: 65.3 square kilometers

e Lake Como: 146 square kilimeters 215



CoT Prompting Example 2

Standard Prompting Chain-of-Thought Prompting
Model Input Model Input
Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now?
A: The answer is 11. A: Roger started with 5 balls. 2 cans of 3 tennis balls

each Is 6 tennis balls. 5 + 6 = 11. The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? make lunch and bought 6 more, how many apples
do they have?

Model Output Model Output

A: The answer is 27. x A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The
answer is 9.
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https://arxiv.org/abs/2201.11903

Chain-of-thought (COT) Prompting

Step-by-step

 Main idea: just “tell” the model to reason in steps

* Can significantly outperform zero-shot prompting with very large
models

® Zero-shot ® Zero-shot-CoT ® Zero-shot ® Zero-shot-CoT ® Zero-shot ® Zero-shot-CoT
30 80 50
60 80 40
30

40 40

20
20 : 20 10
0 0 0

03B 1.3B 6.7B 175B S M L XL 8B 62B 540B

(a) MultiArith on Original GPT-3  (b) MultiArith on Instruct GPT-3 (c) GMS8K on PalLM
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https://arxiv.org/abs/2205.11916

Prompting LLMs - caution!



Model Behaviour: Trustworthiness in the Era of LLMs

> From a “compartmentalised” notion of language tasks in NLP
>~ To powerful but less interpretable black-box models

» Whatis a "language task” today?

0
a

9,
a

Pre-training + Instruction Tuning

Litschko®, Miller-Eberstein®, van der Goot, Weber-Genzel, Plank. Establishing Trustworthiness: Rethinking Tasks and Model Evaluation. EMNLP 2023. 219



Model Behaviour: Does it Matter How we Prompt an LLM?

prop. prompt

— | 1nter. Do you find this movie review positive?

2| indic. | You find this movie review positive.

= imper. | Tell me if you find this movie review positive.

£ | active | Do you find this movie review positive?

S | pass. [s this movie review found positive?

o | past Did you find this movie review positive?

§ pres. Do you find this movie review positive?

= | future | Will you find this movie review positive?
can Can you find this movie review positive?
could Could you find this movie review positive?

2 may May you find this movie review positive?

E might | Might you find this movie review positive?

S| must Must you find this movie review positive?
should | Should you find this movie review positive?
would | Would you find this movie review positive?

.| apprai. | Do you find this movie appraisal positive?

i comm. | Do you find this movie commentary positive?

S| critl. Do you find this movie critique positive?

= | eval. Do you find this movie evaluation positive?

“ | review | Do you find this movie review positive?

Table 1: Examples of variation of linguistic properties

. Performance is highly sensitive to the linguistic variation of a prompt

The language of prompting:
What linguistic properties make a prompt successtul?

Leidinger, van Rooij, Shutova, EMNLP 2023 Findings.

Koksal et al., EMNLP 2023 Findings : Gonen et al., EMNLP 2023 Findings. 220



Multiple-Choice Question Answering (MCQA) Prompt Style

General Instruction: Please
read the multiple-choice question
below carefully and select ONE of
the listed options and only give a
single letter.

Question: The Web was
effectively invented by
Berners-Lee in which year?

Options:
A. 1991
B. 1980
C. 1989
D. 1993
0 Answer:
%&:
b

Wang, Hu, Ma, Rottger, Plank. Look at the Text: Instruction-Tuned Language Models are More Robust Multiple Choice Selectors than You Think. COLM 2024. 221



Evaluation Protocols: Do Answer Options Impact LLM Outputs?

. . @0 S ti
/1 LLM's “A’-bias in MCQA responses > 10 { urvey question
o . ‘ ; ' I : _ y up j I |
= - #
Choice ordering 1 3
. Response S 0.5
Question: In the past 12 months, has P -
this person given birth to any children? o
o Yes mo'ov\v\\d\v\"%%?)%%v)% 200100150
B. No | ONENEEt AT 2 W18k 19,1 19 10470430 0 229919 219 g\ﬁ
Answer: = c,gg%&ec,vﬂ % &eoe?‘%,?‘%vﬁ NS A% % v\ecta\g«\%v 3o ¢
A. Yes B.No
P("A") | 0.82 | P("B") | 0.11 (a) Entropy of base models’ responses.
Choice ordering 2 ® Survey question
Response
Question: In the past 12 months, has 0.6
this person given birth to any children? ” 04
A. No 50
B. Yes — | < 0.2
Answer: . R B
A.No B.Yes > A OV et awy 3 1%1%1%161% ©,28 43908 ,0P %5%
AP Gy 66‘)’\ 16( ’L'\‘?"\' 030’\0’]
A Y30 M5 5237 ° V2 y
P("A”) 0.80 P("B”) | 0.15 6?‘ 239 ?{L g’), \eo ?{6,« S AERIAY «\a 2% Qﬂ 5 2 kel a\\;\a k>

(b) A-bias of base models’ responses.

Dominguez-Olmedo, Hardt, Mendler-Dinner. Questioning the Survey Responses of Large Language Models. arXiv:2306.07951 2023. 222



Evaluation Protocols: Does It Matter How We Extract Answers?

> /1 But “First-token log probs” do not match the text answers

Model (0-shot) First Token Text Answer

General Instruction: Please Gemma-7b-Inst
read the multiple-choice question Llama2-7b-Chat
below carefully and select ONE of | | Llama2-13b-Chat
the listed options and only give a a. First Token Logits: Mistral-7b-Tnst-0.2
single letter. -

{ J Performance on MMLU.
Question: The Web was B | me—
effectively invented by T c |
Berners-Lee in which year? - .

N D J _
Options:
A. 1991 _Sure |
B. 1980
C. 1989
D. 1993 b. Text Answer:

Sure! The answer is (A) 1991. A

ﬁr Answer:

Wang, Ma, Hu, Weber-Genzel, Rottger, Kreuter, Hovy, Plank. "My Answer is C": First-Token Probabilities Do Not Match Text Answers in Instruction-Tuned Language Models. ACL 2024 Findings. 293
Wang, Hu, Ma, Rottger, Plank. Look at the Text: Instruction-Tuned Language Models are More Robust Multiple Choice Selectors than You Think. COLM 2024.



Evaluation Protocols: Chain-of-Thought, Better and Sound?

> /1. Chain-of-Thought Reasoning is Not Sound Correct Sound

Model Answer Reasoning

S

i

Statements: ——
1. There 1s a purple marble in the box if and only if there is a blue marble in the box. ephyr-7B-5 ,
2. There is a blue marble in the box if and only if there is an olive marble in the box. Mistral-7B-Instruct |
3. Either there 1s an olive marble in the box or else there 1s a red marble in the box, but not both. .
4. Either there 1s a red marble in the box or else there 1s a green marble in the box, but not both. LLaMA-2-7B
LLaMA-2-13B
Conclusion: If there is a purple marble in the box then there is a green marble in the box. LLaMA-2-70B

CoT response (excerpt) - manually verified:

7. Let’s consider the possibility that there is an olive marble in the box. If that’s the case, then, | | Supposition following (sound).
according to Statement 2, there must be a blue marble in the box as well.

8. Now, using Statement 1, we know that if there is a blue marble in the box, then there must
be a purple marble in the box as well.

9. However, Statement 3 tells us that if there i1s an olive marble in the box, then there cannot
be a red marble in the box. But, Statement 4 tells us that if there is a red marble in the box,
then there cannot be a green marble in the box.

10. Since we cannot have both an olive marble and a red marble in the box, and we cannot o
have both a red marble and a green marble in the box, it seems that the only possibility left is Invalid inference.
that there is an olive marble in the box, and therefore, a blue marble, a purple marble, but no

red or green marbles.

11. However, the conclusion states that "If there is a purple marble in the box then there is a Conclusion (invalid).
green marble in the box", which 1s not logically true based on the given statements.
Conclusion: False.

Final answer (incorrect).

Mondorf, Plank. Comparing Inferential Strategies of Humans and Large Language Models in Deductive Reasoning. ACL 2024.
Stechly*, Valmeekam®, Kambhampati. Chain of Thoughtlessness? An Analysis of CoT in Planning. arXiv:2405.04776 2024. 224



Evaluation Protocols: Can LLMs Replace Humans Judges?

>~ 1 Alot of variability in LLM outputs

» LLMs are not ready yet to replace human judges - not even GPT-4o:

E.g. Plausibility: Humans vs Models:
Instruction: On ascale—of 1 (very — B e Mixtral-8x228 e Llama-3-70B
: . : 0.8 ~mwmm Gemini-1.5 = GPT-40 |
unlikely) to 5 (very likely), how plausible @ we= Mixtral-8x78 === Comm-R+
. ® 0.7 LR -3-8B
is it that the last response belongs to the @ @ @ - ama
dialogue? %06 W ,
v £ 0.5 - _
A: Made it all the way through four .
years of college playing ball but £
: 0.3
B: I also like The Cosby Show @
0.2 |
S D 3328 T80 baxatai | SR 0.0 M - ll 1l '
| ] ‘ ) ‘ P ‘ ‘; wi“_ ' acceptab\\ét(}\’\erer\cions‘\ Steﬂcgjn gag\(\g ‘\Uenc\l (e\e\laﬂce\,e(bos\t\!

Bavaresco, Bernardi, Bertolazzi, Elliott, Fernandez, Gatt, Ghaleb, Giulianelli, Hanna, Koller, Martins, Mondorf, Neplenbroek, Pezzelle, Plank, Schlangen, Suglia, Surikuchi, Takmaz, Testoni. 2985
LLMs instead of Human Judges? A Large Scale Empirical Study across 20 NLP Evaluation Tasks. arXiv:2406.18403 2024.



Task

nstruction -
\Yi[eYe [=) - Model

D1 Knowledge about Model Input D2 Knowledge about Model Behaviour

Trust arises from knowledge of origin as well as from knowledge of functional capacity.

©
Prediction Expectation § >
D3 Knowledge of Evaluation Protocols | D4 Knowledge of Data Origin
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Data Origin: Late 2022 Claim “ChatGPT Passes the Wug Test"

THIS IS A WUG.

NOW THERE IS ANOTHER ONE.

THERE ARE TWO OF THEM.

THERE ARE TWO

. No! Data contamination. Tested only on English.

R David Mortensen @dn , 2
%/ To put it more simply, @jamonholmgren's illustration is meaningless
because GPT-3 can complete the prompt simply by recapitulating a

conversation it has seen thousands of times in its training data.

Leonie Weissweiler
& NEW PAPER®

ChatGPT's language skills are impressive, but can it pass this simple test
from 19587 In our #EMNLP2023 paper, @vihofmann and | evaluate
ChatGPT's ability for morphological generalization on a novel set of made-
up "wug words" in four languages.

= (1/4)

Counting the Bugs in ChatGPT’s Wugs: A Multilingual Investigation into
the Morphological Capabilities of a Large Language Model

WeiBweiler*, Hofmann* Kantharuban, Mai, Dutt, Henkel, Kabra, Kulkarni, Vijayakumar, Yu, Schiitze, Oflazer, Mortensen. EMNLP 2023.
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Data Origin: Indirect Data Leakage

> /1. Data continuously provided by users (e.g. via OpenAl's the web interface)

©

How can | help you today?

Help me study Suggest fun activities

Write a Python script Make me a personal webpage

Message ChatGPT

%
Leak, Cheat, Repeat: Data Contamination

and Evaluation Malpractices in Closed-Source LLMs

Balloccu, Schmidtova, Lango, Dusek. EACL 2024.

228



Exciting
Opportunities Ahead



Transformers

Computer Vision

* VIT: cut image to patches

* Project each patch to a vector (Class

Bird MLP
Ball [
Car Head \

* [reat them as token embeddings

Transformer Encoder

i 6 18 -i 0 ) 0)
[

# xl
[cla ] mbe dd Lmear Pro_|ect10n of Flattened Patches

Slide by Yoav Artzi.
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[Dosovitskiy et al. 2020]



Transformers
Speech

e Same as computer vision

* But: spectrograms instead of \ Je—
Images o o[z oo [ 8

Encoder Block R Decoder Block
| |
e The Whisper model =
. Decoder Block
S
Encoder Block —
[ — .
b .
©
9
o
L Decoder Block
> Decoder Block

Slide by Yoav Artzi.
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[Radford et al. 2022]



Transformers

Robotics
e Take observations and Q: What should RT-2
. the robot do to
commands, all tokenized oA ) oo

* QOutput continuous joint control _Qp!

actions ::‘ a’“—{ ViT } e
e | - —

AT =[0.1, -0.2, 0]

. )
[A. = 132 114 128 5 25 156 | AR = [10° 25°, —7°]

De-tokenize [
Robot action

Slide by Yoav Artzi.
232

[Brohan et al. 2023]



Today’s Lecture

> Part I: Fundamentals

> Intro, Motivation & Short History

> Language Models (n-grams, FFNN-LM, Recap: FFNN)
> Part Il: Representations & Beyond FFNN

> RNNs (GRU/LSTMs), Attention

> Contextualised Representations (ELMo)

> Part 1ll: Transformer & LLMs

> The Transformer, Masked LMs (BERT), Pre-training & Fine-tuning

>~ Prompting, LLMs & Caution
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IT UNIVERSITY OF COPENHAGEN

Questions?
Thank you

Thanks to all the Barbara Plank
organizers & sponsors of: @barbara plank

Q % LMU Munich

bplank.qgithub.io



http://bplank.github.io

Core References

Jurasky & Martin SLP textbook chapter 3 (n-gram LMs), 7 (neural LMs) & 8 (RNNs)

Arianna Bisazza’s AthNLP 2019 lecture on MT/Transformers

Graham Neubig’s Advanced NLP class

Yoav Artzi’s_LM-class (also based on Greg Durrett’s class material)

Yoav Goldberg (2015): A Primer on Neural Network Models for Natural Language Processing

Chris Manning & Abigail See (2018) Stanford NLP class

Lilian Weng's attention tutorial
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https://web.stanford.edu/~jurafsky/slp3/3.pdf
https://www.youtube.com/watch?v=asa9yme-lO8
https://phontron.com/class/anlp-fall2024/
https://phontron.com/class/anlp-fall2024/
https://arxiv.org/abs/1510.00726
https://lilianweng.github.io/posts/2018-06-24-attention/

