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Ryan McDonald (ASAPP) Classification AthNLP 2024 1 / 114



Classifiers

How does sodium bicarbonate work ?

NOUN or VERB

Set my alarm tomorrow for 10am  -> Alarm

Quickest way to Boston          -> Navigation

Why is there summer and winter  -> Answer seeking
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Warning!

• Focus: machine learning fundamentals
• Specific to language as input modality
• Not specific applications

• If you miss a detail, don’t worry

• Important to get broad concepts
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Linear Classifiers

This lecture is 2/3 about linear classifiers!

Why? It’s 2024 and everybody uses neural networks.

• The underlying machine learning concepts are the same

• The theory (statistics and optimization) are much better understood

• Linear classifiers are a component of neural networks.
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Linear Classifiers and Neural Networks
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Linear Classifiers and Neural Networks

Linear Classifier
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Linear Classifiers and Neural Networks

Linear Classifier

Handcrafted
Features
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Linear Classifiers and Generative AI

• Transformers: 99% of LLMs/GenAI

• ChatGPT; GPT4*
• Claude
• Gemini
• Llama*

• Last layer = linear classifier

• Last layer predicts next word/token

• I.e., last layer is a classifier!
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Binary Classification: Spam Detection

Task: Identify if an incoming email/SMS/DM/etc. is spam or not.

This is a binary classification problem.

Ryan McDonald (ASAPP) Classification AthNLP 2024 7 / 114



Multiclass Classification: Topic Labeling

Task: given a news article, determine its topic (politics, sports, etc.)

This is a multi-class classification problem.
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Let’s Start Simple

• Example 1 – sequence: ⋆ ⋄ ◦; label: −1
• Example 2 – sequence: ⋆ ♡ △; label: −1
• Example 3 – sequence: ⋆ △ ♠; label: +1

• Example 4 – sequence: ⋄ △ ◦; label: +1

• New sequence: ⋆ ⋄ ◦; label ?
• New sequence: ⋆ ⋄ ♡; label
• New sequence: ⋆ △ ◦; label ?

Why can we do this?
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Let’s Start Simple: Machine Learning

• Example 1 – sequence: ⋆ ⋄ ◦; label: −1
• Example 2 – sequence: ⋆ ♡ △; label: −1
• Example 3 – sequence: ⋆ △ ♠; label: +1

• Example 4 – sequence: ⋄ △ ◦; label: +1

• New sequence: ⋆ ⋄ ♡; label −1

Label −1 Label +1

P(−1|⋆) = count(⋆ and −1)
count(⋆) = 2

3
= 0.67 vs. P(+1|⋆) = count(⋆ and +1)

count(⋆) = 1
3
= 0.33

P(−1|⋄) = count(⋄ and −1)
count(⋄) = 1

2
= 0.5 vs. P(+1|⋄) = count(⋄ and +1)

count(⋄) = 1
2
= 0.5

P(−1|♡) = count(♡ and −1)
count(♡)

= 1
1
= 1.0 vs. P(+1|♡) = count(♡ and +1)

count(♡)
= 0

1
= 0.0
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Machine Learning

1 Define a model/distribution of interest

2 Make some assumptions if needed

3 Fit the model to the data
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Outline

1 Terminology, notation and feature representations

2 Perceptron

3 Logistic Regression

4 Support Vector Machines

5 Regularization

6 Neural Networks
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Some Notation: Inputs and Outputs

• Input x ∈ X
• e.g., a news article, a sentence, an image, ...

• Output y ∈ Y
• e.g., spam/not spam, a topic, a translation, an image segmentation

• Input/Output pair: (x,y) ∈ X× Y
• e.g., a news article together with a topic
• e.g., a email together with a spam/no spam label
• e.g., an image partitioned into segmentation regions
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Supervised Machine Learning

• We are given a labeled dataset of input/output pairs:

D = {(xt ,yt)}|X|t=1 ⊆ X× Y

• Goal: use it to learn a classifier h : X→ Y that generalizes well to
arbitrary inputs.

• At test time, given xt ∈ X, we predict

y′ = h(xt).

• Hopefully, y′ ≈ yt most of the time.
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Things can go by different names depending on what Y is...
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Regression

Deals with continuous output variables:

• Regression: Y = R
• e.g., given a news article, how much time a user will spend reading it?

• Multivariate regression: Y = RK , where K > 1
• e.g., predict the X-Y coordinates in an image where the user will click
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Classification

Deals with discrete output variables:

• Binary classification: Y = {±1}
• e.g., spam detection, positive/negative sentiment

• Multi-class classification: Y = {1, 2, . . . ,K}
• e.g., topic classification, positive/negative/neutral sentiment

• Structured classification: Y exponentially large and structured
• e.g., machine translation, caption generation, image segmentation

What about GenerativeAI?

Ryan McDonald (ASAPP) Classification AthNLP 2024 17 / 114



Feature Representations

Feature engineering is an important step in linear classifiers:

• Bag-of-words features for text, also lemmas, parts-of-speech, ...

• Embeddings (e.g., word2vec)

• SIFT features and wavelet representations in computer vision

• External database, APIs and knowledge resources
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Feature Representations

We need to represent information about x

Typical approach: define a feature map ϕ : X→ RD

• ϕ(x) is a high dimensional feature vector

We can use feature vectors to encapsulate Boolean, categorical, and
continuous features

• To start, we will focus on sparse binary features

• Categorical features can be reduced to a range of one-hot binary
values

• We look at continuous (dense) features in neural networks
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Examples

• x is a document and y is a topic

ϕj(x) =

{
1 if x contains the word “interest”
0 otherwise

ϕj(x) = % of words in x with punctuation

• x is a word and y is a part-of-speech tag

ϕj(x) =

{
1 if x ends in “ed”
0 otherwise
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Bag of Words Feature Representation

• x is a name

ϕ0(x) =

{
1 if x contains “George”
0 otherwise

ϕ1(x) =

{
1 if x contains “Washington”
0 otherwise

ϕ2(x) =

{
1 if x contains “Bridge”
0 otherwise

ϕ3(x) =

{
1 if x contains “General”
0 otherwise

ϕ4(x) =

{
1 if x contains an unknown word
0 otherwise

• x=General George Washington → ϕ(x) = [1 1 0 1 0]

• x=George Washington Bridge → ϕ(x) = [1 1 1 0 0]

• x=George Washington University → ϕ(x) = [1 1 0 0 1]

• x=George George George of the Jungle → ϕ(x) = [1 0 0 0 1]
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Feature Engineering and NLP Pipelines

Classical NLP pipelines consist of stacking together several linear classifiers

Each classifier’s predictions are used to handcraft features for other
classifiers

Example: Part-of-speech → Named Entities → Topic Classification

• Part-of-speech: nouns, determiners for Typed Named Entities
• E.g., Google noun vs. Google verb

• Typed Named Entities: Categories for topic classification
• E.g., Which George Washington? Person, University/Organization,

Bridge/Location?
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Our Setup

Let’s assume a multi-class classification problem, with |Y| labels (classes).

Ryan McDonald (ASAPP) Classification AthNLP 2024 23 / 114



Linear Classifiers – Weights/Parameters

• Parametrized by a weight vector w ∈ RD (one weight per feature)

• E.g., D = 5, w = [0.3, 1.2,−5.4, 3.8,−0.09]

• ϕ(x) and w are vectors of same length – D

• We actually need |Y| weight vectors wy ∈ RD

• i.e., one weight vector per output label y
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Linear Classifiers – Weights/Parameters

• ! Important Concept !

• wy is weight/parameter vector for output label y

• Let W = [w1, . . . ,w|Y|]

• W is a concatenation of all wy

• Example
• w1 = [1, 1], w2 = [2, 2], w3 = [3, 3] for |Y| = 3
• Then W = [1, 1, 2, 2, 3, 3]
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Linear Classifiers – Predictions

• The score (or probability) of a particular label is based on a linear
combination of features and their weights

• At test time, predict the class y′ which maximizes this score:

y′ = argmax
y∈Y

wy · ϕ(x) = argmax
y∈Y

∑
i

wi ,y · ϕi (x)

• At training time, different strategies to learn wy’s yield different
linear classifiers: perceptron, logistic regression, SVMs, ...
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Linear Classifiers – Example

• D = 5, Y = {Person (per), Location (loc)}

• wper = [0.3, 1.2,−5.4, 3.8,−0.09]

• wloc = [−0.6, 2.4, 4.0,−2.1, 0.1]

• x =George Washington Bridge → ϕ(x) = [1, 1, 1, 0, 0]

y′ = arg max
y∈{loc,per}

wy · ϕ(x)

= arg max
y∈{loc,per}

{ [−0.6, 2.4, 4.0,−2.1, 0.1]loc · [1, 1, 1, 0, 0],

[0.3, 1.2,−5.4, 3.8,−0.09]per · [1, 1, 1, 0, 0] }
= arg max

y∈{loc,per}
{5.8loc,−3.9per}

= loc
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Linear Classifiers – Bias Terms

• Often linear classifiers are presented as

y′ = argmax
y∈Y

wy · ϕ(x) + by

where by is a bias or offset term

• This can be folded into ϕ(x) via a constant feature

• I.e., ϕ(x) = [ϕ(x), 1]

• For now, we assume this for simplicity
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Commonly Used Notation in Neural Networks

Linear Classifier

Handcrafted
Features

y′ = argmax
(
Wϕ(x)⊤ + b

)
, W =


...

wy
...

 , b =


...
by
...

 .
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Binary Linear Classifier

With binary labels (Y = {±1}) we often use a minimal parametrization:

y′ = arg max
y∈{±1}

wy · ϕ(x) + by

=

{
+1 if w+1 · ϕ(x) + b+1 > w−1 · ϕ(x) + b−1

−1 otherwise

=

{
+1 if (w+1 −w−1) · ϕ(x) + (b+1 − b−1) > 0
−1 otherwise

= sign((w+1 −w−1)︸ ︷︷ ︸
v

·ϕ(x) + (b+1 − b−1)︸ ︷︷ ︸
c

).

That is: only half of the parameters are needed.
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Binary Linear Classifier

Then (v , c) is an hyperplane that divides all points:

1 2-2 -1

1

2

-2

-1

Points along line
have scores of 0

Ryan McDonald (ASAPP) Classification AthNLP 2024 31 / 114



Multiclass Linear Classifier

Defines regions of space.
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Linear Separability

• A set of points is linearly separable if there exists a w such that
classification is perfect

Separable Not Separable
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Learning

• Machine Learning = finding weights/parameters W/w

• Using data! Specifically D = {xt ,yt}t=1

• There are many algorithms for doing this
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Outline

1 Terminology, notation and feature representations

2 Perceptron

3 Logistic Regression

4 Support Vector Machines

5 Regularization

6 Neural Networks
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Perceptron (Rosenblatt, 1958)

(Extracted from Wikipedia)

• Invented in 1957 at the
Cornell Aeronautical
Laboratory by Frank
Rosenblatt

• Implemented in custom-built
hardware as the “Mark 1
perceptron,” designed for
image recognition

• 400 photocells, randomly
connected to the “neurons.”
Weights were encoded in
potentiometers

• Weight updates during
learning were performed by
electric motors.
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Perceptron in the News...
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Perceptron Algorithm

• Online algorithm: process one data point at each round
• Take xt ; apply the current model to make a prediction for it
• If prediction is correct, proceed
• Else, correct model: add feature vector w.r.t. correct output &

subtract feature vector w.r.t. predicted (wrong) output
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Perceptron Algorithm

input: labeled data D

initialize W0 = 0, i.e., w
(0)
y = 0, ∀y

initialize k = 0
repeat

update w
(k+1)
y = w

(k)
y , ∀y

observe example (xt ,yt) ∈ D

predict y′ = argmaxy∈Y w
(k)
y · ϕ(xt)

if y′ ̸= yt then

update w
(k+1)
yt = w

(k)
yt + ϕ(xt)

update w
(k+1)
y′ = w

(k)
y′ − ϕ(xt)

end if
increment k

until maximum number of epochs
output: model weights w
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Perceptron’s Mistake Bound

A couple definitions:

• the training data is linearly separable with margin γ > 0 iff there is a
weight vectors uy with ∥uy∥ = 1 such that

uyt · ϕ(xt) ≥ uy′ · ϕ(xt) + γ, ∀i , ∀y′ ̸= yt .

• radius of the data: R = maxt ∥ϕ(xt)∥.

Then we have the following bound of the number of mistakes:

Theorem (Novikoff (1962))

The perceptron algorithm is guaranteed to find a separating hyperplane
after at most 2R2

γ2 mistakes.

Proof: https://proceedings.mlr.press/v97/beygelzimer19a/beygelzimer19a-supp.pdf
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What a Simple Perceptron Can and Can’t Do

• Remember: the decision boundary is linear (linear classifier)

• It can solve linearly separable problems (OR, AND)
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What a Simple Perceptron Can and Can’t Do

• ... but it can’t solve non-linearly separable problems such as simple
XOR (unless input is transformed into a better representation):

XOR(x1, x2) = XOR(AND(x1, x2),AND(x1, x2))

• Result attributed to Minsky and Papert (1969) but was known before.
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Is it any good in practice?

Until 2013/2014, perceptron variants were pretty close to state-of-the-art

• Hall et al. 2012: Named-entity recognition

• Huang et al. 2012: Part-of-speech tagging

• Li et al. 2013: Event/relation extraction

• Yu et al. 2013: Machine Translation

• Bohnet et al. 2016: Syntactic parsing

We are going to cover more complex and principled linear classifiers

However, they rarely were significantly better than perceptron variants in
practice.
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Outline

1 Terminology, notation and feature representations

2 Perceptron

3 Logistic Regression

4 Support Vector Machines

5 Regularization

6 Neural Networks
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Logistic Regression

Define a conditional probability:

P(y|x) = exp(wy · ϕ(x))
Zx

, where Zx =
∑
y′∈Y

exp(wy′ · ϕ(x))

Critically
∑

y P(y|x) = 1 and P(y|x) ≥ 0, ∀y

Exponentiating and normalizing is called the softmax transformation2

Note: still a linear classifier

argmax
y

P(y|x) = argmax
y

exp(wy · ϕ(x))
Zx

= argmax
y

exp(wy · ϕ(x))

= argmax
y

wy · ϕ(x)

2More later during neural networks!
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Logistic Regression

PW(y|x) = exp(wy · ϕ(x))
Zx

• Let W = [w1, . . . ,w|Y|] be a vector concatenating all weights wy

How do we learn W?

• Set W to minimize the negative conditional log-likelihood:

W = argmin
W
− log

(∏
t=1

PW(yt |xt)

)
= argmin

W
−
∑
t=1

logPW(yt |xt)

= argmin
W

∑
t=1

log
∑
y′

exp(wy′ · ϕ(xt))−wyt · ϕ(xt)

 ,

i.e., set weights to assign as much probability mass as possible to the correct
labels!
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Logistic Regression

• This objective function is convex

• Therefore any local minimum is a global minimum

• No closed form solution, but lots of numerical techniques
• Gradient methods (gradient descent, conjugate gradient)
• Quasi-Newton methods (L-BFGS, ...)
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Recap: Convex functions

Pro: Guarantee of a global minima ✓

Figure: Illustration of a convex function. The line segment between any two
points on the graph lies entirely above the curve.
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Recap: Gradients

A gradient of a function f (W) wrt parameters W = [w1, . . . ,wP ] is:

∇Wf (W) =

[
∂

∂w1
f , . . . ,

∂

∂wP
f

]
I.e., the vector of partial derivatives of f , which is the derivative of f wrt
to each variable wi

The gradient gives the direction and fastest rate of increase of f at point
W

When a gradient is zero we are at a stationary point of f . For convex
functions that means global minima.
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Recap: Iterative Descent Methods

Goal: find the minimum/minimizer of f : Rd → R
• Proceed in small steps in the optimal direction till a stopping

criterion is met (usually norm of gradient is small)
• Gradient descent (GD) updates: w(k+1) ← w(k) − ηk∇f (w(k))

Figure: Illustration of gradient descent. The red lines correspond to steps taken
in the negative gradient direction.
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Logistic Regression: Gradient Descent (GD)

• Let L(W; (x,y)) =
(
log
∑

y′ exp(w′
y · ϕ(x))−wy · ϕ(x)

)
• Call this our loss function for instance x,y

• We want to minimize over D = {(xt ,yt)}t=1 with GD
• I.e., Find argminW

∑
t=1 L(W; (xt ,yt))

• Logistic-regressions loss function often called log-loss or cross-entropy

• GD update will look like

Wk+1 = Wk − ηk∇W (
∑

t=1 L(W; (xt ,yt)))

= Wk − ηk
∑

t=1∇WL(W; (xt ,yt))

• Need to calculate ∇WL(W; (x,y)): gradient of L w.r.t. W

• This is a batch optimization: updates are over whole dataset
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Stochastic Gradient Descent (SGD)

SGD is like perceptron – update every instance:

• Pick (xt ,yt) randomly

• Update Wk+1 = Wk − ηk∇WL(W; (xt ,yt))

• i.e. we approximate the true gradient with a noisy, unbiased, gradient,
based on a single sample

• Variants exist in-between (mini-batches)

• GD and SGD guaranteed to find the optimal W (for suitable step
sizes)

Ryan McDonald (ASAPP) Classification AthNLP 2024 52 / 114



Logistic Regression: Simple SGD Algorithm

input: labeled data D, step sizes η0, η1, . . .

initialize W = 0, i.e., w
(0)
y = 0, ∀y

initialize k = 0
repeat
observe example (xt ,yt) ∈ D

Update Wk+1 = Wk − ηk∇WL(W; (xt ,yt))
increment k

until stopping criterion
output: model weights W

• Picking step sizes example of hyperparameter tuning

• Stopping criterion usually gradient is small: ∥∇WL(W; (xt ,yt))∥ < ϵ, ∀t
• Small (or zero) gradient is stationary point – global minimum

Ryan McDonald (ASAPP) Classification AthNLP 2024 53 / 114



Computing the Gradient: ∇WL(W; (xt ,yt))

• We need ∇WL(W; (x,y)), where

L(W; (x,y)) = log
∑
y′

exp(wy′ · ϕ(x))−wy · ϕ(x)

W = [w1, . . . ,wy′ , . . . ,wy, . . . ,w|Y|]

Some reminders:

1 ∇w log F (w) = 1
F (w)∇wF (w)

2 ∇w expF (w) = exp(F (w))∇wF (w)
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Computing the Gradient

∇WL(W; (x,y)) = ∇W

log
∑
y′

exp(wy′ · ϕ(x))−wy · ϕ(x)


= ∇W log

∑
y′

exp(wy′ · ϕ(x))−∇Wwy · ϕ(x)

=
1∑

y′ exp(wy′ · ϕ(x))
∑
y′

∇W exp(wy′ · ϕ(x))−∇Wwy · ϕ(x)

=
1

Zx

∑
y′

exp(wy′ · ϕ(x))∇Wwy′ · ϕ(x)−∇Wwy · ϕ(x)

=
∑
y′

exp(wy′ · ϕ(x))
Zx

∇Wwy′ · ϕ(x)−∇Wwy · ϕ(x)

=
∑
y′

PW(y′|x)∇Wwy′ · ϕ(x)−∇Wwy · ϕ(x).
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Computing the Gradient

∇WL(W; (x,y)) =
∑

y′ PW(y′|x)∇Wwy′ · ϕ(x)−∇Wwy · ϕ(x)

Let’s look at the partial derivative wrt to a variable i : ∂
∂wi

L(W; (x,y))

Remember that W = [w1, . . . ,wy′ , . . . ,wy, . . . ,w|Y|]

Cases:

1 i indexes a weight wi in W that is in wy∑
y′

PW(y′|x) ∂

∂wi
wy′ · ϕ(x) − ∂

∂wi
wy · ϕ(x) = PW(y|x)ϕi (x)−ϕi (x)

2 i indexes a weight wi in W that is in wy′ where y′ ̸= y∑
y′

PW(y′|x) ∂

∂wi
wy′ · ϕ(x) − ∂

∂wi
wy · ϕ(x) = PW(y′|x)ϕi (x)
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What does the update look like?

Cases:

1 For true output y

wk+1
y = wk

y − η (PW(y|x)ϕ(x)−ϕ(x))

2 For y′ ̸= y
wk+1

y′ = wk
y′ − η

(
PW(y′|x)ϕ(x)

)
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SGD for Logistic Regression

input: labeled data D, step sizes η0, η1, . . .

initialize W = 0, i.e., w
(0)
y = 0, ∀y

initialize k = 0
repeat
observe example (xt ,yt) ∈ D

wk+1
yt

= wk
yt
− ηk (PW(yt |x)ϕ(x)−ϕ(x))

wk+1
y′ = wk

y′ − ηk (PW(y′|x)ϕ(x)) for y′ ̸= yt

increment k
until stopping criterion
output: model weights W
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Logistic Regression Summary

• Define conditional probability

PW(y|x) = exp(w · ϕ(x,y))
Zx

• Set weights to minimize negative conditional log-likelihood:

W = argminW
∑
t

− logPW(yt |xt) = argminw
∑
t

L(W; (xt ,yt))

• Can find the gradient and run gradient descent (or any gradient-based
optimization algorithm)
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The Story So Far

• Logistic regression is discriminative: maximizes conditional likelihood
• also called log-linear model and max-entropy classifier
• no closed form solution
• For training instance (x,y), SDG updates look like

wk+1
y = wk

y + η (ϕ(x)− PW(y|x)ϕ(x))

wk+1
y′ = wk

y′ − η (PW(y′|x)ϕ(x)) for y′ ̸= y

• Perceptron is a discriminative, non-probabilistic classifier
• For training instance (x,y), updates look like

wk+1
y = wk

y + ϕ(x)

wk+1
y′ = wk

y′ − ϕ(x) for y′ ̸= y

SGD updates for logistic regression and perceptron’s updates look similar!

Ryan McDonald (ASAPP) Classification AthNLP 2024 60 / 114



Classification Margin

• For a training set D

• Margin of a weight vector W is largest γ such that

wyt · ϕ(xt)−wy′ · ϕ(xt) ≥ γ

• for every training instance (xt ,yt) ∈ D, y′ ̸= y ∈ Y
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Classification Margin

Training Testing

Denote the
value of the
margin by γ
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Maximizing Margin

• Intuitively maximizing margin makes sense

• More importantly, generalization error to unseen test data is
proportional to the inverse of the margin

ϵ ∝ R2

γ2 × |D|

• Perceptron:
• If a training set is separable by some margin, the perceptron will find a

w that separates the data
• However, the perceptron does not pick w to maximize the margin!

• Logistic Regression:
• Not guaranteed to even separate data
• softmax & log-loss is a margin-like optimization
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Outline

1 Terminology, notation and feature representations

2 Perceptron

3 Logistic Regression

4 Support Vector Machines

5 Regularization

6 Neural Networks
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Maximizing Margin

Let γ > 0
max

||W||≤1
γ

such that:
wyt · ϕ(xt)−wy′ · ϕ(xt) ≥ γ

∀(xt ,yt) ∈ D

and y′ ∈ Y, y′ ̸= yt

• Note: algorithm still minimizes error if data is separable

• ||W|| is bound since scaling trivially produces larger margin

• W = [w1, . . . ,w|Y|]
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Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||W||≤1

γ

such that:

wyt ·ϕ(xt)−wy′ ·ϕ(xt) ≥ γ

∀(xt ,yt) ∈ D

and y′ ∈ Y, y′ ̸= yt

=

Min Norm:

min
W

1

2
||W||2

such that:

wyt ·ϕ(xt)−wy′ ·ϕ(xt) ≥ 1

∀(xt ,yt) ∈ D

and y′ ∈ Y, y′ ̸= yt

• Instead of fixing ||W|| we fix the margin γ = 1

• Re-parameterize W′ = W/γ → ∥W′∥ = ∥W∥/γ → γ = ∥W∥
∥W′∥ = 1

∥W′∥ .
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Support Vector Machines

W = argminW
1

2
||W||2

such that:
wyt · ϕ(xt)−wy′ · ϕ(xt) ≥ 1

∀(xt ,yt) ∈ D and y′ ∈ Y, y′ ̸= yt

• Quadratic programming problem – a well known convex optimization
problem

• Can be solved with many techniques.
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Support Vector Machines

What if data is not separable?

W = argminW,ξ

1

2
||W||2 + C

∑
t=1

ξt

such that:

wyt · ϕ(xt)−wy′ · ϕ(xt) ≥ 1− ξt and ξt ≥ 0

∀(xt ,yt) ∈ D and y′ ∈ Y, y′ ̸= yt

ξt : trade-off between margin per example and ∥W∥
Larger C = more examples correctly classified
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Support Vector Machines

W = argminW,ξ

λ

2
||W||2 +

∑
t=1

ξt λ =
1

C

such that:

wyt · ϕ(xt)−wy′ · ϕ(xt) ≥ 1− ξt , ∀(xt ,yt) ∈ D and y′ ∈ Y, y′ ̸= yt

= wyt · ϕ(xt)− max
y′ ̸=yt

wy′ · ϕ(xt) ≥ 1− ξt , ∀(xt ,yt) ∈ D

= ξt ≥ 1 + max
y′ ̸=yt

wy′ · ϕ(xt)−wyt · ϕ(xt), ∀(xt ,yt) ∈ D
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Support Vector Machines

W = argminW,ξ

λ

2
||W||2 +

∑
t=1

ξt

such that:

ξt ≥ 1 + max
y′ ̸=yt

wy′ · ϕ(xt)−wyt · ϕ(xt), ∀(xt ,yt) ∈ D

Hinge loss

If W classifies (xt ,yt) with margin 1, penalty ξt = 0 (by def’n ξt ≥ 0)
Otherwise penalty ξt = 1 +maxy′ ̸=yt wy′ · ϕ(xt)−wyt · ϕ(xt)

L(W; (xt ,yt)) = max (0, 1 + max
y′ ̸=yt

wy′ · ϕ(xt)−wyt · ϕ(xt))
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Support Vector Machines

W = argminW,ξ

λ

2
||W||2 +

∑
t=1

ξt

such that:

ξt ≥ 1 + max
y′ ̸=yt

wy′ · ϕ(xt)−wyt · ϕ(xt), ∀(xt ,yt) ∈ D

Hinge loss equivalent

W = argminW
∑
t=1

L((xt ,yt);W) +
λ

2
||W||2

= argminW

(∑
t=1

max (0, 1 + max
y′ ̸=yt

wy′ · ϕ(xt)−wyt · ϕ(xt))

)
+

λ

2
||W||2
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Overfitting

If the model is too complex (too many parameters) and the data is scarce,
we run the risk of overfitting:
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Regularization

In practice, we regularize models to prevent overfitting

argminW
∑
t=1

L(W; (xt , yt)) + λΩ(W),

where Ω(W) is the regularization function, and λ controls how much to
regularize.

• Gaussian prior (ℓ2), promotes smaller weights:

Ω(W) = ∥W∥22 =
∑
i

W2
i .

• Laplacian prior (ℓ1), promotes sparse weights!

Ω(W) = ∥W∥1 =
∑
i

|Wi |
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Logistic Regression with ℓ2 Regularization

• Still optimize with GD or SGD

• What is the new gradient?∑
t=1

∇WL(W; (xt ,yt)) +∇WλΩ(w)

=
∑
t=1

∇WL(W; (xt ,yt)) +∇W
λ

2
∥W∥2

• We know ∇WL(W; (xt ,yt))

• Just need ∇W
λ
2 ∥W∥

2 = λW
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Support Vector Machines

Hinge-loss formulation: ℓ2 regularization already happening!

W = argminW
∑
t=1

L(W; (xt ,yt)) + λΩ(W)

= argminW
∑
t=1

max (0, 1 + max
y ̸=yt

wy · ϕ(xt)−wyt · ϕ(xt)) + λΩ(W)

= argminW
∑
t=1

max (0, 1 + max
y ̸=yt

wy · ϕ(xt)−wyt · ϕ(xt)) +
λ

2
∥W∥2

↑ SVM optimization ↑
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SVMs vs. Logistic Regression

W = argminW
∑
t=1

L(W; (xt ,yt)) + λΩ(W)

SVMs/hinge-loss: max (0, 1 + maxy ̸=yt (wy · ϕ(xt)−wyt · ϕ(xt)))

W = argminW
∑
t=1

max (0, 1 + max
y ̸=yt

wy · ϕ(xt)−wyt · ϕ(xt)) +
λ

2
∥W∥2

Logistic Regression/log-loss: log
∑

y′
t
exp(wy′

t
· ϕ(xt))−wyt · ϕ(xt)

W = argmin
W

∑
t=1

log
∑
y′
t

exp(wy′
t
· ϕ(xt))−wyt · ϕ(xt ,yt)

+
λ

2
∥W∥2

W = argmin
W

∑
t=1

∑
y′
t

P(y′
t |x)− P(yt |x)

+
λ

2
∥W∥2
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SVMs vs. Logistic Regression

W = argminW
∑
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y ̸=yt
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λ

2
∥W∥2
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y′
t
exp(wy′

t
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W = argmin
W

∑
t=1

log
∑
y′
t

exp(wy′
t
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λ

2
∥W∥2

W = argmin
W

∑
t=1

∑
y′
t

P(y′
t |x)− P(yt |x)

+
λ

2
∥W∥2
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SVMs vs. Logistic Regression
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λ

2
∥W∥2
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t
exp(wy′

t
· ϕ(xt))−wyt · ϕ(xt)

W = argmin
W

∑
t=1

log
∑
y′
t

exp(wy′
t
· ϕ(xt))−wyt · ϕ(xt ,yt)

+
λ

2
∥W∥2

W = argmin
W

∑
t=1

∑
y′
t

P(y′
t |x)− P(yt |x)

+
λ

2
∥W∥2
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Loss Function

Should match as much as possible the metric we want to optimize at test
time

Should be well-behaved (continuous, maybe smooth) to be amenable to
optimization (this rules out the 0/1 loss)

Some examples:

• Squared loss for regression

• Negative log-likelihood (cross-entropy): multinomial logistic regression

• Hinge loss: support vector machines

• A bunch more ...
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Linear Classifier

Could not possible cover everything.
Please look at Andre Martins excellent lecture for LXMLS:

• http://lxmls.it.pt/2019/LINEAR_LEARNERS.pdf

• Also covers
• Naive Bayes
• Sub-gradient descent

• Needed for SVMs
• Perceptron update is sub-gradient with no margin

• Non-Linear Classifiers ̸= Neural Networks
• K-Nearest neighbors
• Kernel methods
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Reminder

Linear Classifier

Handcrafted
Features

y′ = argmax
(
Wϕ(x)⊤ + b

)
, W =


...

wy
...

 , b =


...
by
...

 .
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No more ϕ

Linear Classifier

y′ = argmax (Wx+ b) , x = ϕ(x)⊤, W =


...

wy
...

 , b =


...
by
...
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Linear classifiers as Matrix Multiplication

Let w1 = [w1
1 ,w

1
2 ,w

1
3 ], w2 = [w2

1 ,w
2
2 ,w

2
3 ], w3 = [w3

1 ,w
3
2 ,w

3
3 ] and x = [x1, x2, x3]

Wx+ b =

 w1
1 w1

2 w1
3

w2
1 w2

2 w2
3

w3
1 w3

2 w3
3


 x1

x2
x3

+

 b1
b2
b3



=

 (w1
1 × x1) + (w1

2 × x2) + (w1
3 × x3)

(w2
1 × x1) + (w2

2 × x2) + (w2
3 × x3)

(w3
1 × x1) + (w3

2 × x2) + (w3
3 × x3)

+

 b1
b2
b3



=

 (w1
1 × x1) + (w1

2 × x2) + (w1
3 × x3) + b1

(w2
1 × x1) + (w2

2 × x2) + (w2
3 × x3) + b2

(w3
1 × x1) + (w3

2 × x2) + (w3
3 × x3) + b3



=

 w1 · x+ b1

w2 · x+ b2

w3 · x+ b3

 =

 y1

y2

y3
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On to neural networks!
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Neurons, Layers and Connections

Input
Layer

Hidden
Layer

Neuron

Output
Layer

Layer
Connections

• A (dense / fully-connected) feed-forward neural network (FF-NN)
• AKA a Multi-layer Perceptron (MLP)

• Input and output layers are special (more on this)

• However connections between layers take a similar form
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Hidden Layer Connections

Inputs: hi-1                                                Outputs: hi

• Let hi ∈ RDi be the i th hidden layer with Di dimensions/neurons

• hi = fi (Wihi−1 + bi )

• Wi ∈ RDi×Di−1 and bi ∈ Di are layer parameters

• fi is the layer’s (non-linear) activation function
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Activation Functions

• Non-linearity by transforming/projecting the data

• Squashes output to finite range

• Examples ...

From Hughes and Correll 2016
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Output Layer

final                                         output
hidden                                    classes
layer

• This was first 2/3 of the lecture!

• y′ = argmax y ; where y = Wfinalhfinal−1 + bfinal

• I.e., Wfinal = W and hfinal−1 = ϕ(x)

• yi often called the logit of yi or written logit(y)
• Various models correspond to different loss functions L(W;D)

• Logistic regression: log-loss/cross-entropy via softmax elogit(y)∑
y′∈Y elogit(y′)

• SVMs: hinge-loss
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A Wee Example

• x ∈ R2

• h = tanh(Wx+ b) with W ∈ R3×2 and b ∈ R3

• |Y| = 2 with y = W′h+ b′ with W′ ∈ R2×3 and b′ ∈ R2

• Log-loss (cross-entropy):

• L(W; (x,y)) = − log(P(y|x)) = − log elogit(y)∑
y′∈Y elogit(y′)

x0

x1

y0

h0

y1

h1

h2

tanh(
  W02*x0 +
  W12*x1 +
  b2
)

tanh(
  W00*x0 +
  W10*x1 +
  b0
)

tanh(
  W01*x0 +
  W11*x1 +
  b1
)

W’00*h0 +
W’10*h1 +
W’20*h2 +
b’0

W’01*h0 +
W’11*h1 +
W’21*h2 +
b’1

ey0

-----------
ey0 + ey1

ey1

-----------
ey0 + ey1

P(y0| x)

P(y1| x)

Often called ‘softmax’ layer
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Neural Networks So Far

• Neural network structure (FF-NN; MLP)

• Input layer: for now, assume given to us x ∈ RD

• Outputs: y ∈ Y

• Hidden layers: hi ∈ RDi ; with hi = fi (Wihi−1 + bi )
• Thus, model parameters W = {Wi , bi | ∀i}
• Including last output layer parameters

• Loss function: L(W; (x,y)) – usually log-loss/cross-entropy
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Neural Networks: Optimization

• Hidden layers make model non-convex!

• No single global optimum. Must settle for a local one.

• If loss function and activation functions are differentiable, then can be
optimized with gradient-based techniques (e.g., gradient descent)

• Gradient computation a little trickier
• Solution: backpropagation (Rumelhart et al. (1988))
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Backpropagation and the Chain Rule

• We need to compute ∇WL(W;D) = [ ∂L
∂w0

, ∂L
∂w1

, . . .], ∀wi ∈W

• For linear classifiers, W were feature weights
• For NNs, W is the set of all weights, e.g., W = {Wi ,bi | ∀i}

• Chain rule: z = g(y) and y = f (x), then ∂z
∂x = ∂z

∂y
∂y
∂x

• Example: Lets say L = g(z) and z = f (x , y)

• Compute all partial derivatives for L, ∂L
∂z ,

∂L
∂x ,

∂L
∂y

x

y

zf
∂L
∂z

∂L
∂y

∂L
∂z

∂z
∂y=

∂L
∂x

∂L
∂z

∂z
∂x=

∂z
∂x

∂z
∂y

Need to compute:        for all variables w
∂L
∂w
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Toy Example: Analytical Partial Derivatives

All base derivativesx1

x2 h1

h2

w1*x1 
+ 

w2*x2

x3

x4

w3*x3 
+ 

w4*x4

u1*h1 
+ 

u2*h2
y

L(y, y’) = (y-y’)2

We want
∂L
∂u1

∂L
∂u2

∂L
∂w1

∂L
∂w2

∂L
∂w3

∂L
∂w4

∂L
∂y = 2(y-y’)

∂y
∂h1 = u1 ∂y

∂h2 = u2

∂y
∂u1 = h1 ∂y

∂u2 = h2

∂h1
∂w1 = x1 ∂h1

∂w2 = x2

∂h1
∂x1 = w1 ∂h1

∂x2 = w2

∂h2
∂w3 = x3 ∂h1

∂w4 = x4

∂h1
∂x3 = w3 ∂h1

∂x4 = w4

w1 w2

w3 w4

u1 u2

∂L
∂u1

∂L
∂y

∂y
∂u1= = 2(y-y’)*h1 ∂L

∂w1
∂L
∂y

∂y
∂w1

∂L
∂y

∂y
∂h1

∂h1
∂w1= = = 2(y-y’)*u1*x1

Full derivation examples
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Toy Example: Backpropagation at Work

• Analytically computing chain rule in deep networks is onerous

• Backpropagation

• Forward pass: compute values at neurons and final loss
• Backward pass: compute ∂L

∂wi
at each neuron

• ∂L
∂wi

of parameter neurons form gradient

2

4 8

-5

2*2
+

4*1

-5

3

1*-5
+

0*3

0.5*8 
+

1*-5
-1

2 1

1 0

0.5 1

∂L
∂y = 2(y-y’) = 4

4

∂L
∂u1

∂L
∂y=

= 4*h1 = 4*8 = 16

∂y
∂u1

16

∂L
∂h1

∂L
∂y=

= 4*u1
= 4*0.5 = 2

∂y
∂h1

2

= 2*x1 = 2*2 = 4 

4

Neuron derivatives

∂L
∂y = 2(y-y’)

∂L
∂h1

∂L
∂y

∂y
∂h1=

∂L
∂h2

∂L
∂y

∂y
∂h2=

∂L
∂u1

∂L
∂y

∂y
∂u1=

∂L
∂u2

∂L
∂y

∂y
∂u1=

∂L
∂w1

∂L
∂y

∂h1
∂w1=

∂L
∂w2

∂L
∂y

∂h1
∂w2=

∂L
∂w3

∂L
∂y

∂h2
∂w3=

∂L
∂w4

∂L
∂y

∂h2
∂w4=

∂L
∂w1

∂L
∂h1

∂h1
∂w1=

Let true y = 1
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Input layer

• x ∈ RD

• What is this for language?

• Words are discreet
• Sparse or one-hot vectors used in linear classifiers?

• Parameter sparsity and computational bottlenecks
• Does not leverage flexibility of NNs

• Solution: Embrace the vector!
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Input layer

VERB

NOUN

.

.

.

.

.

.

work

• Consider classifying a word in isolation with a part-of-speech tag3

• Input is a word x ∈ RD

• There is a fixed a finite vocabulary V, i.e., x ∈ V

3This is contrived. We usually use context.
Ryan McDonald (ASAPP) Classification AthNLP 2024 95 / 114



Input layer = Embedding layer

.

.

.

.

.

.

work

• Input is a word x ∈ RD for all x ∈ V

• We store these in a |V| × D look up table
• These are the model word embeddings
• AKA embedding layer; word look-up table; ...
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Input layer = Embedding layer

• Static embedding layer
• Fixed word embeddings; not updated during training
• Examples: SVD; word2vec; glove; ...

• Dynamic embedding layer
• Randomly initialize word embeddings
• Learn during training of the full network
• Updated like any other layer during backpropagation

• Static + Dynamic
• Initialize model with static embeddings; update dynamically
• Combination: part of embedding layer is static; part is learned
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Example Static Embedding Layer: Word2Vec

• Corpus C = {X1, . . . ,X|C|}
• With sentences X = x1, . . . ,x|X|
• Vocab V = {xi |xi ∈ X and X ∈ C}
• Goal: learn vector/embedding xi for all xi ∈ V

• word2vec (Mikolov et al. (2013))
• Define two embeddings per word: xi and x′

i
• xi represents word as focus; x′

i as context
• word2vec optimizes (SkipGram model):

|C|∑
i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log p(xj+k |xj) =
|C|∑
i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log
exj ·x′

j+k∑
xl∈V e

xj ·x′
l

Maximize the probability word embedding can predict neighbours in some
context window (of size c)
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Example Static Embedding Layer: Word2Vec

|C|∑
i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log p(xj+k |xj) =
|C|∑
i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log
exj ·x′

j+k∑
xl∈V e

xj ·x′
l

brown

The     c=-2

Quick   c=-1

Fox     c=+1

Jumps   c=+2

Example from McCormick http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
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Example Static Embedding Layer: Word2Vec

Re-writing the equation: |C|∑
i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log exj ·x′
j+k

−
 |C|∑

i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log
∑
xl∈V

exj ·x′
l


• On the left: Sum over positive contexts
• On the right: Sum over negative contexts

• Not feasible to sum over entire vocabulary

• Solution: negative sampling |C|∑
i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log exj ·x′
j+k

−
 |C|∑

i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log
∑
xl∈Vs

exj ·x′
l


• Vs is randomly sampled, i.e., Vs ⊂ V and |Vs | << |V| (often 1)
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Example Static Embedding Layer: Word2Vec

 |C|∑
i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log exj ·x′
j+k

−
 |C|∑

i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log
∑
xl∈Vs

exj ·x′
l



• Parameters of the model are xi and x′
i

• xi are used as final word embeddings (x′
i usually discarded)

• Usually optimized with SGD

Fun word arithmetic artifact:

xGreece − (xCanada − xOttawa) = xAthens
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Embeddings via Language Models

• word2vec is an example of a language model

• It models the probability of a word given a context

• Pre-trained contextual language models dominate NLP: ELMO,
BERT, ROBERTA, XLNet, ..., GPT, Claude, Gemini, Llama, ...

• Transformed the field, business and potentially the economy

• Other lectures will cover RNNs, which is main building block of NN
language models and LLMs
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Input layer

.

.

.

.

.

.

work

VERB

NOUN

.

.

.

.

.

.

work

• Static (e.g., word2vec) or dynamic word embeddings give us input
layer
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Dynamic Input layer

x1

x2 h1

h2

w1*x1 
+ 

w2*x2

x3

x4

w3*x3 
+ 

w4*x4

u1*h1 
+ 

u2*h2
y

L(y, y’) = (y-y’)2

We want
∂L
∂u1

∂L
∂u2

∂L
∂w1

∂L
∂w2

∂L
∂w3

∂L
∂w4

w1 w2

w3 w4

u1 u2

∂L
∂x1

∂L
∂x2

∂L
∂x3

∂L
∂x4

• Gradient now includes input neurons, ∂L
∂xi

• Every value in the entire lookup table is a parameter!
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Variable Length Inputs

• But what if input is a whole document and not just a single word?
• Feed-forward neural networks assume a fixed-length input, x ∈ RD

• Documents are not fixed length

POSITIVE

NEGATIVE

The
steak
was
cooked
to 
perfection
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Variable Length Inputs: Options

1 Truncate document at fixed length K, x ∈ RK×D

2 Average embeddings (below), x ∈ RD

3 convolutional and recurrent neural networks4

POSITIVE

NEGATIVE

The

steak

was

cooked

to
 
perfection

Average

4RNNs next lecture
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Convolutional Neural Networks

POSITIVE

NEGATIVE

<sos>

The

steak

was

cooked

to
 
perfection

<eos>

Pooling Layer

MLP

MLP

MLP

MLP

MLP

MLP

MLP

MLP

Convolutional 
Layer

padding
MLP

receptive field

filters

Waibel et al. (1989) is often cited
as earliest example of a CNN
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Convolutional Neural Networks

• Convolutional layer
• A NN sub-architecture
• Slides over input at a fixed stride, usually 1
• Receptive field: fixed size input (e.g., n-gram)
• Filter: MLP that creates a single vector output per position
• Can be multiple filters: Almost always shared positionally; sometimes

even per layer

• Pooling layer
• Converts convolutional output to a single fixed-length vector
• Average pooling: average outputs of convolutional layers
• Max pooling: position-wise max over outputs of convolutional layers
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Deep Convolutional Neural Networks

POSITIVE

NEGATIVE

<sos>

The

steak

was

cooked

to
 
perfection

<eos>

MLP

MLP

MLP

MLP

MLP

MLP

MLP

Convolutional Layer Pooling Layer

Convolutional Block

POSITIVE

NEGATIVE

<sos>

The

steak

was

cooked

to
 
perfection

<eos>

MLPConv.
Block

Conv.
Block

Conv.
Block
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Neural Network Summary

• Feed-forward Neural Networks

• Neurons, layers and connections

• Output layers and losses

• Back propagation
• Input layers

• Static vs dynamic vs mixed

• High-level questions
• Where does layer and network structure come from?
• Why should I use neural networks?
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Where Does Network Structure Come From?

• Hyperparamters: input/hidden dimensions; activation functions; ...
• Usually empirical
• Can largely be automated

• Deep Learning = lot’s of layers

• Fully-connected/dense required?
• No!
• However, rarely does more specialized layer connections help
• Any efficiency concerns lessened by modern architectures (GPU, TPU)
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Main Points

Analytical
Backpropagation

Inputs
Sparse / Dense

Feature Engineering
Word Embeddings

One-hot
Average Dense

Convolutional-NN

Output
Binary / multiclass

Softmax or raw
Log-loss, hinge loss, ...

POSITIVE

NEGATIVE

The
steak
was
cooked
to 
perfection

Model
Perceptron

Logistic Regresion
SVM

...
Feed-Forward-NN
Convolutional-NN

∇w L(w, D) → (S)GD
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Main Points in Words

• Sparse (binary) vs. dense (embeddings) features

• Optimization: Use gradient-based techniques
• Linear Classifiers

• Usually sparse features with block representations
• Loss functions define model (Log reg vs. SVMs)
• Regularization necessary for good performance

• Neural Networks
• Final layer = linear classifiers
• Hidden layers = non-convex
• Compute gradient with backpropagation
• Input layer: static (e.g., word2vec) vs. dynamic (backprop)
• Input layer: Usually dense look-up table
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