
Classification

Ryan McDonald 1

AthNLP, September, 2024

1
Slide provenance: Ryan McDonald → Shay Cohen → Stefan Riezler → André Martins → Ryan McDonald

Ryan McDonald (ASAPP) Classification AthNLP 2024 1 / 114

Classifiers

How does sodium bicarbonate work ?

NOUN or VERB

Set my alarm tomorrow for 10am -> Alarm

Quickest way to Boston -> Navigation

Why is there summer and winter -> Answer seeking

Ryan McDonald (ASAPP) Classification AthNLP 2024 2 / 114

Warning!

• Focus: machine learning fundamentals
• Specific to language as input modality
• Not specific applications

• If you miss a detail, don’t worry

• Important to get broad concepts

Ryan McDonald (ASAPP) Classification AthNLP 2024 3 / 114

Linear Classifiers

This lecture is 2/3 about linear classifiers!

Why? It’s 2024 and everybody uses neural networks.

• The underlying machine learning concepts are the same

• The theory (statistics and optimization) are much better understood

• Linear classifiers are a component of neural networks.

Ryan McDonald (ASAPP) Classification AthNLP 2024 4 / 114

Linear Classifiers and Neural Networks

Ryan McDonald (ASAPP) Classification AthNLP 2024 5 / 114

Linear Classifiers and Neural Networks

Linear Classifier

Ryan McDonald (ASAPP) Classification AthNLP 2024 5 / 114

Linear Classifiers and Neural Networks

Linear Classifier

Handcrafted
Features

Ryan McDonald (ASAPP) Classification AthNLP 2024 5 / 114

Linear Classifiers and Generative AI

• Transformers: 99% of LLMs/GenAI

• ChatGPT; GPT4*
• Claude
• Gemini
• Llama*

• Last layer = linear classifier

• Last layer predicts next word/token

• I.e., last layer is a classifier!

Ryan McDonald (ASAPP) Classification AthNLP 2024 6 / 114

Binary Classification: Spam Detection

Task: Identify if an incoming email/SMS/DM/etc. is spam or not.

This is a binary classification problem.

Ryan McDonald (ASAPP) Classification AthNLP 2024 7 / 114

Multiclass Classification: Topic Labeling

Task: given a news article, determine its topic (politics, sports, etc.)

This is a multi-class classification problem.

Ryan McDonald (ASAPP) Classification AthNLP 2024 8 / 114

Let’s Start Simple

• Example 1 – sequence: ⋆ ⋄ ◦; label: −1
• Example 2 – sequence: ⋆ ♡ △; label: −1
• Example 3 – sequence: ⋆ △ ♠; label: +1

• Example 4 – sequence: ⋄ △ ◦; label: +1

• New sequence: ⋆ ⋄ ◦; label ?
• New sequence: ⋆ ⋄ ♡; label
• New sequence: ⋆ △ ◦; label ?

Why can we do this?

Ryan McDonald (ASAPP) Classification AthNLP 2024 9 / 114

Let’s Start Simple

• Example 1 – sequence: ⋆ ⋄ ◦; label: −1
• Example 2 – sequence: ⋆ ♡ △; label: −1
• Example 3 – sequence: ⋆ △ ♠; label: +1

• Example 4 – sequence: ⋄ △ ◦; label: +1

• New sequence: ⋆ ⋄ ◦; label ?

• New sequence: ⋆ ⋄ ♡; label
• New sequence: ⋆ △ ◦; label ?

Why can we do this?

Ryan McDonald (ASAPP) Classification AthNLP 2024 9 / 114

Let’s Start Simple

• Example 1 – sequence: ⋆ ⋄ ◦; label: −1
• Example 2 – sequence: ⋆ ♡ △; label: −1
• Example 3 – sequence: ⋆ △ ♠; label: +1

• Example 4 – sequence: ⋄ △ ◦; label: +1

• New sequence: ⋆ ⋄ ◦; label −1
• New sequence: ⋆ ⋄ ♡; label ?

• New sequence: ⋆ △ ◦; label ?

Why can we do this?

Ryan McDonald (ASAPP) Classification AthNLP 2024 9 / 114

Let’s Start Simple

• Example 1 – sequence: ⋆ ⋄ ◦; label: −1
• Example 2 – sequence: ⋆ ♡ △; label: −1
• Example 3 – sequence: ⋆ △ ♠; label: +1

• Example 4 – sequence: ⋄ △ ◦; label: +1

• New sequence: ⋆ ⋄ ◦; label −1
• New sequence: ⋆ ⋄ ♡; label −1
• New sequence: ⋆ △ ◦; label ?

Why can we do this?

Ryan McDonald (ASAPP) Classification AthNLP 2024 9 / 114

Let’s Start Simple

• Example 1 – sequence: ⋆ ⋄ ◦; label: −1
• Example 2 – sequence: ⋆ ♡ △; label: −1
• Example 3 – sequence: ⋆ △ ♠; label: +1

• Example 4 – sequence: ⋄ △ ◦; label: +1

• New sequence: ⋆ ⋄ ◦; label −1
• New sequence: ⋆ ⋄ ♡; label −1
• New sequence: ⋆ △ ◦; label ?

Why can we do this?

Ryan McDonald (ASAPP) Classification AthNLP 2024 9 / 114

Let’s Start Simple: Machine Learning

• Example 1 – sequence: ⋆ ⋄ ◦; label: −1
• Example 2 – sequence: ⋆ ♡ △; label: −1
• Example 3 – sequence: ⋆ △ ♠; label: +1

• Example 4 – sequence: ⋄ △ ◦; label: +1

• New sequence: ⋆ ⋄ ♡; label −1

Label −1 Label +1

P(−1|⋆) = count(⋆ and −1)
count(⋆) = 2

3
= 0.67 vs. P(+1|⋆) = count(⋆ and +1)

count(⋆) = 1
3
= 0.33

P(−1|⋄) = count(⋄ and −1)
count(⋄) = 1

2
= 0.5 vs. P(+1|⋄) = count(⋄ and +1)

count(⋄) = 1
2
= 0.5

P(−1|♡) = count(♡ and −1)
count(♡)

= 1
1
= 1.0 vs. P(+1|♡) = count(♡ and +1)

count(♡)
= 0

1
= 0.0

Ryan McDonald (ASAPP) Classification AthNLP 2024 10 / 114

Let’s Start Simple: Machine Learning

• Example 1 – sequence: ⋆ ⋄ ◦; label: −1
• Example 2 – sequence: ⋆ ♡ △; label: −1
• Example 3 – sequence: ⋆ △ ♠; label: +1

• Example 4 – sequence: ⋄ △ ◦; label: +1

• New sequence: ⋆ △ ◦; label ?

Label −1 Label +1

P(−1|⋆) = count(⋆ and −1)
count(⋆) = 2

3
= 0.67 vs. P(+1|⋆) = count(⋆ and +1)

count(⋆) = 1
3
= 0.33

P(−1|△) = count(△ and −1)
count(△)

= 1
3
= 0.33 vs. P(+1|△) = count(△ and +1)

count(△)
= 2

3
= 0.67

P(−1|◦) = count(◦ and −1)
count(◦) = 1

2
= 0.5 vs. P(+1|◦) = count(◦ and +1)

count(◦) = 1
2
= 0.5

Ryan McDonald (ASAPP) Classification AthNLP 2024 10 / 114

Machine Learning

1 Define a model/distribution of interest

2 Make some assumptions if needed

3 Fit the model to the data

Ryan McDonald (ASAPP) Classification AthNLP 2024 11 / 114

Outline

1 Terminology, notation and feature representations

2 Perceptron

3 Logistic Regression

4 Support Vector Machines

5 Regularization

6 Neural Networks

Ryan McDonald (ASAPP) Classification AthNLP 2024 12 / 114

Some Notation: Inputs and Outputs

• Input x ∈ X
• e.g., a news article, a sentence, an image, ...

• Output y ∈ Y
• e.g., spam/not spam, a topic, a translation, an image segmentation

• Input/Output pair: (x,y) ∈ X× Y
• e.g., a news article together with a topic
• e.g., a email together with a spam/no spam label
• e.g., an image partitioned into segmentation regions

Ryan McDonald (ASAPP) Classification AthNLP 2024 13 / 114

Supervised Machine Learning

• We are given a labeled dataset of input/output pairs:

D = {(xt ,yt)}|X|t=1 ⊆ X× Y

• Goal: use it to learn a classifier h : X→ Y that generalizes well to
arbitrary inputs.

• At test time, given xt ∈ X, we predict

y′ = h(xt).

• Hopefully, y′ ≈ yt most of the time.

Ryan McDonald (ASAPP) Classification AthNLP 2024 14 / 114

Things can go by different names depending on what Y is...

Ryan McDonald (ASAPP) Classification AthNLP 2024 15 / 114

Regression

Deals with continuous output variables:

• Regression: Y = R
• e.g., given a news article, how much time a user will spend reading it?

• Multivariate regression: Y = RK , where K > 1
• e.g., predict the X-Y coordinates in an image where the user will click

Ryan McDonald (ASAPP) Classification AthNLP 2024 16 / 114

Classification

Deals with discrete output variables:

• Binary classification: Y = {±1}
• e.g., spam detection, positive/negative sentiment

• Multi-class classification: Y = {1, 2, . . . ,K}
• e.g., topic classification, positive/negative/neutral sentiment

• Structured classification: Y exponentially large and structured
• e.g., machine translation, caption generation, image segmentation

What about GenerativeAI?

Ryan McDonald (ASAPP) Classification AthNLP 2024 17 / 114

Feature Representations

Feature engineering is an important step in linear classifiers:

• Bag-of-words features for text, also lemmas, parts-of-speech, ...

• Embeddings (e.g., word2vec)

• SIFT features and wavelet representations in computer vision

• External database, APIs and knowledge resources

Ryan McDonald (ASAPP) Classification AthNLP 2024 18 / 114

Feature Representations

We need to represent information about x

Typical approach: define a feature map ϕ : X→ RD

• ϕ(x) is a high dimensional feature vector

We can use feature vectors to encapsulate Boolean, categorical, and
continuous features

• To start, we will focus on sparse binary features

• Categorical features can be reduced to a range of one-hot binary
values

• We look at continuous (dense) features in neural networks

Ryan McDonald (ASAPP) Classification AthNLP 2024 19 / 114

Examples

• x is a document and y is a topic

ϕj(x) =

{
1 if x contains the word “interest”
0 otherwise

ϕj(x) = % of words in x with punctuation

• x is a word and y is a part-of-speech tag

ϕj(x) =

{
1 if x ends in “ed”
0 otherwise

Ryan McDonald (ASAPP) Classification AthNLP 2024 20 / 114

Bag of Words Feature Representation

• x is a name

ϕ0(x) =

{
1 if x contains “George”
0 otherwise

ϕ1(x) =

{
1 if x contains “Washington”
0 otherwise

ϕ2(x) =

{
1 if x contains “Bridge”
0 otherwise

ϕ3(x) =

{
1 if x contains “General”
0 otherwise

ϕ4(x) =

{
1 if x contains an unknown word
0 otherwise

• x=General George Washington → ϕ(x) = [1 1 0 1 0]

• x=George Washington Bridge → ϕ(x) = [1 1 1 0 0]

• x=George Washington University → ϕ(x) = [1 1 0 0 1]

• x=George George George of the Jungle → ϕ(x) = [1 0 0 0 1]

Ryan McDonald (ASAPP) Classification AthNLP 2024 21 / 114

Feature Engineering and NLP Pipelines

Classical NLP pipelines consist of stacking together several linear classifiers

Each classifier’s predictions are used to handcraft features for other
classifiers

Example: Part-of-speech → Named Entities → Topic Classification

• Part-of-speech: nouns, determiners for Typed Named Entities
• E.g., Google noun vs. Google verb

• Typed Named Entities: Categories for topic classification
• E.g., Which George Washington? Person, University/Organization,

Bridge/Location?

Ryan McDonald (ASAPP) Classification AthNLP 2024 22 / 114

Our Setup

Let’s assume a multi-class classification problem, with |Y| labels (classes).

Ryan McDonald (ASAPP) Classification AthNLP 2024 23 / 114

Linear Classifiers – Weights/Parameters

• Parametrized by a weight vector w ∈ RD (one weight per feature)

• E.g., D = 5, w = [0.3, 1.2,−5.4, 3.8,−0.09]

• ϕ(x) and w are vectors of same length – D

• We actually need |Y| weight vectors wy ∈ RD

• i.e., one weight vector per output label y

Ryan McDonald (ASAPP) Classification AthNLP 2024 24 / 114

Linear Classifiers – Weights/Parameters

• ! Important Concept !

• wy is weight/parameter vector for output label y

• Let W = [w1, . . . ,w|Y|]

• W is a concatenation of all wy

• Example
• w1 = [1, 1], w2 = [2, 2], w3 = [3, 3] for |Y| = 3
• Then W = [1, 1, 2, 2, 3, 3]

Ryan McDonald (ASAPP) Classification AthNLP 2024 25 / 114

Linear Classifiers – Predictions

• The score (or probability) of a particular label is based on a linear
combination of features and their weights

• At test time, predict the class y′ which maximizes this score:

y′ = argmax
y∈Y

wy · ϕ(x) = argmax
y∈Y

∑
i

wi ,y · ϕi (x)

• At training time, different strategies to learn wy’s yield different
linear classifiers: perceptron, logistic regression, SVMs, ...

Ryan McDonald (ASAPP) Classification AthNLP 2024 26 / 114

Linear Classifiers – Example

• D = 5, Y = {Person (per), Location (loc)}

• wper = [0.3, 1.2,−5.4, 3.8,−0.09]

• wloc = [−0.6, 2.4, 4.0,−2.1, 0.1]

• x =George Washington Bridge → ϕ(x) = [1, 1, 1, 0, 0]

y′ = arg max
y∈{loc,per}

wy · ϕ(x)

= arg max
y∈{loc,per}

{ [−0.6, 2.4, 4.0,−2.1, 0.1]loc · [1, 1, 1, 0, 0],

[0.3, 1.2,−5.4, 3.8,−0.09]per · [1, 1, 1, 0, 0] }
= arg max

y∈{loc,per}
{5.8loc,−3.9per}

= loc

Ryan McDonald (ASAPP) Classification AthNLP 2024 27 / 114

Linear Classifiers – Bias Terms

• Often linear classifiers are presented as

y′ = argmax
y∈Y

wy · ϕ(x) + by

where by is a bias or offset term

• This can be folded into ϕ(x) via a constant feature

• I.e., ϕ(x) = [ϕ(x), 1]

• For now, we assume this for simplicity

Ryan McDonald (ASAPP) Classification AthNLP 2024 28 / 114

Commonly Used Notation in Neural Networks

Linear Classifier

Handcrafted
Features

y′ = argmax
(
Wϕ(x)⊤ + b

)
, W =

...

wy
...

 , b =

...
by
...

 .

Ryan McDonald (ASAPP) Classification AthNLP 2024 29 / 114

Binary Linear Classifier

With binary labels (Y = {±1}) we often use a minimal parametrization:

y′ = arg max
y∈{±1}

wy · ϕ(x) + by

=

{
+1 if w+1 · ϕ(x) + b+1 > w−1 · ϕ(x) + b−1

−1 otherwise

=

{
+1 if (w+1 −w−1) · ϕ(x) + (b+1 − b−1) > 0
−1 otherwise

= sign((w+1 −w−1)︸ ︷︷ ︸
v

·ϕ(x) + (b+1 − b−1)︸ ︷︷ ︸
c

).

That is: only half of the parameters are needed.

Ryan McDonald (ASAPP) Classification AthNLP 2024 30 / 114

Binary Linear Classifier

With binary labels (Y = {±1}) we often use a minimal parametrization:

y′ = arg max
y∈{±1}

wy · ϕ(x) + by

=

{
+1 if w+1 · ϕ(x) + b+1 > w−1 · ϕ(x) + b−1

−1 otherwise

=

{
+1 if (w+1 −w−1) · ϕ(x) + (b+1 − b−1) > 0
−1 otherwise

= sign((w+1 −w−1)︸ ︷︷ ︸
v

·ϕ(x) + (b+1 − b−1)︸ ︷︷ ︸
c

).

That is: only half of the parameters are needed.

Ryan McDonald (ASAPP) Classification AthNLP 2024 30 / 114

Binary Linear Classifier

With binary labels (Y = {±1}) we often use a minimal parametrization:

y′ = arg max
y∈{±1}

wy · ϕ(x) + by

=

{
+1 if w+1 · ϕ(x) + b+1 > w−1 · ϕ(x) + b−1

−1 otherwise

=

{
+1 if (w+1 −w−1) · ϕ(x) + (b+1 − b−1) > 0
−1 otherwise

= sign((w+1 −w−1)︸ ︷︷ ︸
v

·ϕ(x) + (b+1 − b−1)︸ ︷︷ ︸
c

).

That is: only half of the parameters are needed.

Ryan McDonald (ASAPP) Classification AthNLP 2024 30 / 114

Binary Linear Classifier

With binary labels (Y = {±1}) we often use a minimal parametrization:

y′ = arg max
y∈{±1}

wy · ϕ(x) + by

=

{
+1 if w+1 · ϕ(x) + b+1 > w−1 · ϕ(x) + b−1

−1 otherwise

=

{
+1 if (w+1 −w−1) · ϕ(x) + (b+1 − b−1) > 0
−1 otherwise

= sign((w+1 −w−1)︸ ︷︷ ︸
v

·ϕ(x) + (b+1 − b−1)︸ ︷︷ ︸
c

).

That is: only half of the parameters are needed.

Ryan McDonald (ASAPP) Classification AthNLP 2024 30 / 114

Binary Linear Classifier

Then (v , c) is an hyperplane that divides all points:

1 2-2 -1

1

2

-2

-1

Points along line
have scores of 0

Ryan McDonald (ASAPP) Classification AthNLP 2024 31 / 114

Multiclass Linear Classifier

Defines regions of space.

Ryan McDonald (ASAPP) Classification AthNLP 2024 32 / 114

Linear Separability

• A set of points is linearly separable if there exists a w such that
classification is perfect

Separable Not Separable

Ryan McDonald (ASAPP) Classification AthNLP 2024 33 / 114

Learning

• Machine Learning = finding weights/parameters W/w

• Using data! Specifically D = {xt ,yt}t=1

• There are many algorithms for doing this

Ryan McDonald (ASAPP) Classification AthNLP 2024 34 / 114

Outline

1 Terminology, notation and feature representations

2 Perceptron

3 Logistic Regression

4 Support Vector Machines

5 Regularization

6 Neural Networks

Ryan McDonald (ASAPP) Classification AthNLP 2024 35 / 114

Perceptron (Rosenblatt, 1958)

(Extracted from Wikipedia)

• Invented in 1957 at the
Cornell Aeronautical
Laboratory by Frank
Rosenblatt

• Implemented in custom-built
hardware as the “Mark 1
perceptron,” designed for
image recognition

• 400 photocells, randomly
connected to the “neurons.”
Weights were encoded in
potentiometers

• Weight updates during
learning were performed by
electric motors.

Ryan McDonald (ASAPP) Classification AthNLP 2024 36 / 114

Perceptron in the News...

Ryan McDonald (ASAPP) Classification AthNLP 2024 37 / 114

Perceptron Algorithm

• Online algorithm: process one data point at each round
• Take xt ; apply the current model to make a prediction for it
• If prediction is correct, proceed
• Else, correct model: add feature vector w.r.t. correct output &

subtract feature vector w.r.t. predicted (wrong) output

Ryan McDonald (ASAPP) Classification AthNLP 2024 38 / 114

Perceptron Algorithm

input: labeled data D

initialize W0 = 0, i.e., w
(0)
y = 0, ∀y

initialize k = 0
repeat

update w
(k+1)
y = w

(k)
y , ∀y

observe example (xt ,yt) ∈ D

predict y′ = argmaxy∈Y w
(k)
y · ϕ(xt)

if y′ ̸= yt then

update w
(k+1)
yt = w

(k)
yt + ϕ(xt)

update w
(k+1)
y′ = w

(k)
y′ − ϕ(xt)

end if
increment k

until maximum number of epochs
output: model weights w

Ryan McDonald (ASAPP) Classification AthNLP 2024 39 / 114

Perceptron’s Mistake Bound

A couple definitions:

• the training data is linearly separable with margin γ > 0 iff there is a
weight vectors uy with ∥uy∥ = 1 such that

uyt · ϕ(xt) ≥ uy′ · ϕ(xt) + γ, ∀i , ∀y′ ̸= yt .

• radius of the data: R = maxt ∥ϕ(xt)∥.

Then we have the following bound of the number of mistakes:

Theorem (Novikoff (1962))

The perceptron algorithm is guaranteed to find a separating hyperplane
after at most 2R2

γ2 mistakes.

Proof: https://proceedings.mlr.press/v97/beygelzimer19a/beygelzimer19a-supp.pdf

Ryan McDonald (ASAPP) Classification AthNLP 2024 40 / 114

https://proceedings.mlr.press/v97/beygelzimer19a/beygelzimer19a-supp.pdf

Perceptron’s Mistake Bound

A couple definitions:

• the training data is linearly separable with margin γ > 0 iff there is a
weight vectors uy with ∥uy∥ = 1 such that

uyt · ϕ(xt) ≥ uy′ · ϕ(xt) + γ, ∀i , ∀y′ ̸= yt .

• radius of the data: R = maxt ∥ϕ(xt)∥.

Then we have the following bound of the number of mistakes:

Theorem (Novikoff (1962))

The perceptron algorithm is guaranteed to find a separating hyperplane
after at most 2R2

γ2 mistakes.

Proof: https://proceedings.mlr.press/v97/beygelzimer19a/beygelzimer19a-supp.pdf

Ryan McDonald (ASAPP) Classification AthNLP 2024 40 / 114

https://proceedings.mlr.press/v97/beygelzimer19a/beygelzimer19a-supp.pdf

What a Simple Perceptron Can and Can’t Do

• Remember: the decision boundary is linear (linear classifier)

• It can solve linearly separable problems (OR, AND)

Ryan McDonald (ASAPP) Classification AthNLP 2024 41 / 114

What a Simple Perceptron Can and Can’t Do

• ... but it can’t solve non-linearly separable problems such as simple
XOR (unless input is transformed into a better representation):

XOR(x1, x2) = XOR(AND(x1, x2),AND(x1, x2))

• Result attributed to Minsky and Papert (1969) but was known before.

Ryan McDonald (ASAPP) Classification AthNLP 2024 42 / 114

Is it any good in practice?

Until 2013/2014, perceptron variants were pretty close to state-of-the-art

• Hall et al. 2012: Named-entity recognition

• Huang et al. 2012: Part-of-speech tagging

• Li et al. 2013: Event/relation extraction

• Yu et al. 2013: Machine Translation

• Bohnet et al. 2016: Syntactic parsing

We are going to cover more complex and principled linear classifiers

However, they rarely were significantly better than perceptron variants in
practice.

Ryan McDonald (ASAPP) Classification AthNLP 2024 43 / 114

Outline

1 Terminology, notation and feature representations

2 Perceptron

3 Logistic Regression

4 Support Vector Machines

5 Regularization

6 Neural Networks

Ryan McDonald (ASAPP) Classification AthNLP 2024 44 / 114

Logistic Regression

Define a conditional probability:

P(y|x) = exp(wy · ϕ(x))
Zx

, where Zx =
∑
y′∈Y

exp(wy′ · ϕ(x))

Critically
∑

y P(y|x) = 1 and P(y|x) ≥ 0, ∀y

Exponentiating and normalizing is called the softmax transformation2

Note: still a linear classifier

argmax
y

P(y|x) = argmax
y

exp(wy · ϕ(x))
Zx

= argmax
y

exp(wy · ϕ(x))

= argmax
y

wy · ϕ(x)

2More later during neural networks!
Ryan McDonald (ASAPP) Classification AthNLP 2024 45 / 114

Logistic Regression

PW(y|x) = exp(wy · ϕ(x))
Zx

• Let W = [w1, . . . ,w|Y|] be a vector concatenating all weights wy

How do we learn W?

• Set W to minimize the negative conditional log-likelihood:

W = argmin
W
− log

(∏
t=1

PW(yt |xt)

)
= argmin

W
−
∑
t=1

logPW(yt |xt)

= argmin
W

∑
t=1

log
∑
y′

exp(wy′ · ϕ(xt))−wyt · ϕ(xt)

 ,

i.e., set weights to assign as much probability mass as possible to the correct
labels!

Ryan McDonald (ASAPP) Classification AthNLP 2024 46 / 114

Logistic Regression

• This objective function is convex

• Therefore any local minimum is a global minimum

• No closed form solution, but lots of numerical techniques
• Gradient methods (gradient descent, conjugate gradient)
• Quasi-Newton methods (L-BFGS, ...)

Ryan McDonald (ASAPP) Classification AthNLP 2024 47 / 114

Recap: Convex functions

Pro: Guarantee of a global minima ✓

Figure: Illustration of a convex function. The line segment between any two
points on the graph lies entirely above the curve.

Ryan McDonald (ASAPP) Classification AthNLP 2024 48 / 114

Recap: Gradients

A gradient of a function f (W) wrt parameters W = [w1, . . . ,wP] is:

∇Wf (W) =

[
∂

∂w1
f , . . . ,

∂

∂wP
f

]
I.e., the vector of partial derivatives of f , which is the derivative of f wrt
to each variable wi

The gradient gives the direction and fastest rate of increase of f at point
W

When a gradient is zero we are at a stationary point of f . For convex
functions that means global minima.

Ryan McDonald (ASAPP) Classification AthNLP 2024 49 / 114

Recap: Iterative Descent Methods

Goal: find the minimum/minimizer of f : Rd → R
• Proceed in small steps in the optimal direction till a stopping

criterion is met (usually norm of gradient is small)
• Gradient descent (GD) updates: w(k+1) ← w(k) − ηk∇f (w(k))

Figure: Illustration of gradient descent. The red lines correspond to steps taken
in the negative gradient direction.

Ryan McDonald (ASAPP) Classification AthNLP 2024 50 / 114

Logistic Regression: Gradient Descent (GD)

• Let L(W; (x,y)) =
(
log
∑

y′ exp(w′
y · ϕ(x))−wy · ϕ(x)

)
• Call this our loss function for instance x,y

• We want to minimize over D = {(xt ,yt)}t=1 with GD
• I.e., Find argminW

∑
t=1 L(W; (xt ,yt))

• Logistic-regressions loss function often called log-loss or cross-entropy

• GD update will look like

Wk+1 = Wk − ηk∇W (
∑

t=1 L(W; (xt ,yt)))

= Wk − ηk
∑

t=1∇WL(W; (xt ,yt))

• Need to calculate ∇WL(W; (x,y)): gradient of L w.r.t. W

• This is a batch optimization: updates are over whole dataset

Ryan McDonald (ASAPP) Classification AthNLP 2024 51 / 114

Stochastic Gradient Descent (SGD)

SGD is like perceptron – update every instance:

• Pick (xt ,yt) randomly

• Update Wk+1 = Wk − ηk∇WL(W; (xt ,yt))

• i.e. we approximate the true gradient with a noisy, unbiased, gradient,
based on a single sample

• Variants exist in-between (mini-batches)

• GD and SGD guaranteed to find the optimal W (for suitable step
sizes)

Ryan McDonald (ASAPP) Classification AthNLP 2024 52 / 114

Logistic Regression: Simple SGD Algorithm

input: labeled data D, step sizes η0, η1, . . .

initialize W = 0, i.e., w
(0)
y = 0, ∀y

initialize k = 0
repeat
observe example (xt ,yt) ∈ D

Update Wk+1 = Wk − ηk∇WL(W; (xt ,yt))
increment k

until stopping criterion
output: model weights W

• Picking step sizes example of hyperparameter tuning

• Stopping criterion usually gradient is small: ∥∇WL(W; (xt ,yt))∥ < ϵ, ∀t
• Small (or zero) gradient is stationary point – global minimum

Ryan McDonald (ASAPP) Classification AthNLP 2024 53 / 114

Computing the Gradient: ∇WL(W; (xt ,yt))

• We need ∇WL(W; (x,y)), where

L(W; (x,y)) = log
∑
y′

exp(wy′ · ϕ(x))−wy · ϕ(x)

W = [w1, . . . ,wy′ , . . . ,wy, . . . ,w|Y|]

Some reminders:

1 ∇w log F (w) = 1
F (w)∇wF (w)

2 ∇w expF (w) = exp(F (w))∇wF (w)

Ryan McDonald (ASAPP) Classification AthNLP 2024 54 / 114

Computing the Gradient

∇WL(W; (x,y)) = ∇W

log
∑
y′

exp(wy′ · ϕ(x))−wy · ϕ(x)

= ∇W log

∑
y′

exp(wy′ · ϕ(x))−∇Wwy · ϕ(x)

=
1∑

y′ exp(wy′ · ϕ(x))
∑
y′

∇W exp(wy′ · ϕ(x))−∇Wwy · ϕ(x)

=
1

Zx

∑
y′

exp(wy′ · ϕ(x))∇Wwy′ · ϕ(x)−∇Wwy · ϕ(x)

=
∑
y′

exp(wy′ · ϕ(x))
Zx

∇Wwy′ · ϕ(x)−∇Wwy · ϕ(x)

=
∑
y′

PW(y′|x)∇Wwy′ · ϕ(x)−∇Wwy · ϕ(x).

Ryan McDonald (ASAPP) Classification AthNLP 2024 55 / 114

Computing the Gradient

∇WL(W; (x,y)) =
∑

y′ PW(y′|x)∇Wwy′ · ϕ(x)−∇Wwy · ϕ(x)

Let’s look at the partial derivative wrt to a variable i : ∂
∂wi

L(W; (x,y))

Remember that W = [w1, . . . ,wy′ , . . . ,wy, . . . ,w|Y|]

Cases:

1 i indexes a weight wi in W that is in wy∑
y′

PW(y′|x) ∂

∂wi
wy′ · ϕ(x) − ∂

∂wi
wy · ϕ(x) = PW(y|x)ϕi (x)−ϕi (x)

2 i indexes a weight wi in W that is in wy′ where y′ ̸= y∑
y′

PW(y′|x) ∂

∂wi
wy′ · ϕ(x) − ∂

∂wi
wy · ϕ(x) = PW(y′|x)ϕi (x)

Ryan McDonald (ASAPP) Classification AthNLP 2024 56 / 114

What does the update look like?

Cases:

1 For true output y

wk+1
y = wk

y − η (PW(y|x)ϕ(x)−ϕ(x))

2 For y′ ̸= y
wk+1

y′ = wk
y′ − η

(
PW(y′|x)ϕ(x)

)

Ryan McDonald (ASAPP) Classification AthNLP 2024 57 / 114

SGD for Logistic Regression

input: labeled data D, step sizes η0, η1, . . .

initialize W = 0, i.e., w
(0)
y = 0, ∀y

initialize k = 0
repeat
observe example (xt ,yt) ∈ D

wk+1
yt

= wk
yt
− ηk (PW(yt |x)ϕ(x)−ϕ(x))

wk+1
y′ = wk

y′ − ηk (PW(y′|x)ϕ(x)) for y′ ̸= yt

increment k
until stopping criterion
output: model weights W

Ryan McDonald (ASAPP) Classification AthNLP 2024 58 / 114

Logistic Regression Summary

• Define conditional probability

PW(y|x) = exp(w · ϕ(x,y))
Zx

• Set weights to minimize negative conditional log-likelihood:

W = argminW
∑
t

− logPW(yt |xt) = argminw
∑
t

L(W; (xt ,yt))

• Can find the gradient and run gradient descent (or any gradient-based
optimization algorithm)

Ryan McDonald (ASAPP) Classification AthNLP 2024 59 / 114

The Story So Far

• Logistic regression is discriminative: maximizes conditional likelihood
• also called log-linear model and max-entropy classifier
• no closed form solution
• For training instance (x,y), SDG updates look like

wk+1
y = wk

y + η (ϕ(x)− PW(y|x)ϕ(x))

wk+1
y′ = wk

y′ − η (PW(y′|x)ϕ(x)) for y′ ̸= y

• Perceptron is a discriminative, non-probabilistic classifier
• For training instance (x,y), updates look like

wk+1
y = wk

y + ϕ(x)

wk+1
y′ = wk

y′ − ϕ(x) for y′ ̸= y

SGD updates for logistic regression and perceptron’s updates look similar!

Ryan McDonald (ASAPP) Classification AthNLP 2024 60 / 114

Classification Margin

• For a training set D

• Margin of a weight vector W is largest γ such that

wyt · ϕ(xt)−wy′ · ϕ(xt) ≥ γ

• for every training instance (xt ,yt) ∈ D, y′ ̸= y ∈ Y

Ryan McDonald (ASAPP) Classification AthNLP 2024 61 / 114

Classification Margin

Training Testing

Denote the
value of the
margin by γ

Ryan McDonald (ASAPP) Classification AthNLP 2024 62 / 114

Maximizing Margin

• Intuitively maximizing margin makes sense

• More importantly, generalization error to unseen test data is
proportional to the inverse of the margin

ϵ ∝ R2

γ2 × |D|

• Perceptron:
• If a training set is separable by some margin, the perceptron will find a

w that separates the data
• However, the perceptron does not pick w to maximize the margin!

• Logistic Regression:
• Not guaranteed to even separate data
• softmax & log-loss is a margin-like optimization

Ryan McDonald (ASAPP) Classification AthNLP 2024 63 / 114

Outline

1 Terminology, notation and feature representations

2 Perceptron

3 Logistic Regression

4 Support Vector Machines

5 Regularization

6 Neural Networks

Ryan McDonald (ASAPP) Classification AthNLP 2024 64 / 114

Maximizing Margin

Let γ > 0
max

||W||≤1
γ

such that:
wyt · ϕ(xt)−wy′ · ϕ(xt) ≥ γ

∀(xt ,yt) ∈ D

and y′ ∈ Y, y′ ̸= yt

• Note: algorithm still minimizes error if data is separable

• ||W|| is bound since scaling trivially produces larger margin

• W = [w1, . . . ,w|Y|]

Ryan McDonald (ASAPP) Classification AthNLP 2024 65 / 114

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||W||≤1

γ

such that:

wyt ·ϕ(xt)−wy′ ·ϕ(xt) ≥ γ

∀(xt ,yt) ∈ D

and y′ ∈ Y, y′ ̸= yt

=

Min Norm:

min
W

1

2
||W||2

such that:

wyt ·ϕ(xt)−wy′ ·ϕ(xt) ≥ 1

∀(xt ,yt) ∈ D

and y′ ∈ Y, y′ ̸= yt

• Instead of fixing ||W|| we fix the margin γ = 1

• Re-parameterize W′ = W/γ → ∥W′∥ = ∥W∥/γ → γ = ∥W∥
∥W′∥ = 1

∥W′∥ .

Ryan McDonald (ASAPP) Classification AthNLP 2024 66 / 114

Support Vector Machines

W = argminW
1

2
||W||2

such that:
wyt · ϕ(xt)−wy′ · ϕ(xt) ≥ 1

∀(xt ,yt) ∈ D and y′ ∈ Y, y′ ̸= yt

• Quadratic programming problem – a well known convex optimization
problem

• Can be solved with many techniques.

Ryan McDonald (ASAPP) Classification AthNLP 2024 67 / 114

Support Vector Machines

What if data is not separable?

W = argminW,ξ

1

2
||W||2 + C

∑
t=1

ξt

such that:

wyt · ϕ(xt)−wy′ · ϕ(xt) ≥ 1− ξt and ξt ≥ 0

∀(xt ,yt) ∈ D and y′ ∈ Y, y′ ̸= yt

ξt : trade-off between margin per example and ∥W∥
Larger C = more examples correctly classified

Ryan McDonald (ASAPP) Classification AthNLP 2024 68 / 114

Support Vector Machines

W = argminW,ξ

λ

2
||W||2 +

∑
t=1

ξt λ =
1

C

such that:

wyt · ϕ(xt)−wy′ · ϕ(xt) ≥ 1− ξt , ∀(xt ,yt) ∈ D and y′ ∈ Y, y′ ̸= yt

= wyt · ϕ(xt)− max
y′ ̸=yt

wy′ · ϕ(xt) ≥ 1− ξt , ∀(xt ,yt) ∈ D

= ξt ≥ 1 + max
y′ ̸=yt

wy′ · ϕ(xt)−wyt · ϕ(xt), ∀(xt ,yt) ∈ D

Ryan McDonald (ASAPP) Classification AthNLP 2024 69 / 114

Support Vector Machines

W = argminW,ξ

λ

2
||W||2 +

∑
t=1

ξt λ =
1

C

such that:

wyt · ϕ(xt)−wy′ · ϕ(xt) ≥ 1− ξt , ∀(xt ,yt) ∈ D and y′ ∈ Y, y′ ̸= yt

= wyt · ϕ(xt)− max
y′ ̸=yt

wy′ · ϕ(xt) ≥ 1− ξt , ∀(xt ,yt) ∈ D

= ξt ≥ 1 + max
y′ ̸=yt

wy′ · ϕ(xt)−wyt · ϕ(xt), ∀(xt ,yt) ∈ D

Ryan McDonald (ASAPP) Classification AthNLP 2024 69 / 114

Support Vector Machines

W = argminW,ξ

λ

2
||W||2 +

∑
t=1

ξt λ =
1

C

such that:

wyt · ϕ(xt)−wy′ · ϕ(xt) ≥ 1− ξt , ∀(xt ,yt) ∈ D and y′ ∈ Y, y′ ̸= yt

= wyt · ϕ(xt)− max
y′ ̸=yt

wy′ · ϕ(xt) ≥ 1− ξt , ∀(xt ,yt) ∈ D

= ξt ≥ 1 + max
y′ ̸=yt

wy′ · ϕ(xt)−wyt · ϕ(xt), ∀(xt ,yt) ∈ D

Ryan McDonald (ASAPP) Classification AthNLP 2024 69 / 114

Support Vector Machines

W = argminW,ξ

λ

2
||W||2 +

∑
t=1

ξt

such that:

ξt ≥ 1 + max
y′ ̸=yt

wy′ · ϕ(xt)−wyt · ϕ(xt), ∀(xt ,yt) ∈ D

Hinge loss

If W classifies (xt ,yt) with margin 1, penalty ξt = 0 (by def’n ξt ≥ 0)
Otherwise penalty ξt = 1 +maxy′ ̸=yt wy′ · ϕ(xt)−wyt · ϕ(xt)

L(W; (xt ,yt)) = max (0, 1 + max
y′ ̸=yt

wy′ · ϕ(xt)−wyt · ϕ(xt))

Ryan McDonald (ASAPP) Classification AthNLP 2024 70 / 114

Support Vector Machines

W = argminW,ξ

λ

2
||W||2 +

∑
t=1

ξt

such that:

ξt ≥ 1 + max
y′ ̸=yt

wy′ · ϕ(xt)−wyt · ϕ(xt), ∀(xt ,yt) ∈ D

Hinge loss equivalent

W = argminW
∑
t=1

L((xt ,yt);W) +
λ

2
||W||2

= argminW

(∑
t=1

max (0, 1 + max
y′ ̸=yt

wy′ · ϕ(xt)−wyt · ϕ(xt))

)
+

λ

2
||W||2

Ryan McDonald (ASAPP) Classification AthNLP 2024 70 / 114

Outline

1 Terminology, notation and feature representations

2 Perceptron

3 Logistic Regression

4 Support Vector Machines

5 Regularization

6 Neural Networks

Ryan McDonald (ASAPP) Classification AthNLP 2024 71 / 114

Overfitting

If the model is too complex (too many parameters) and the data is scarce,
we run the risk of overfitting:

Ryan McDonald (ASAPP) Classification AthNLP 2024 72 / 114

Regularization

In practice, we regularize models to prevent overfitting

argminW
∑
t=1

L(W; (xt , yt)) + λΩ(W),

where Ω(W) is the regularization function, and λ controls how much to
regularize.

• Gaussian prior (ℓ2), promotes smaller weights:

Ω(W) = ∥W∥22 =
∑
i

W2
i .

• Laplacian prior (ℓ1), promotes sparse weights!

Ω(W) = ∥W∥1 =
∑
i

|Wi |

Ryan McDonald (ASAPP) Classification AthNLP 2024 73 / 114

Logistic Regression with ℓ2 Regularization

• Still optimize with GD or SGD

• What is the new gradient?∑
t=1

∇WL(W; (xt ,yt)) +∇WλΩ(w)

=
∑
t=1

∇WL(W; (xt ,yt)) +∇W
λ

2
∥W∥2

• We know ∇WL(W; (xt ,yt))

• Just need ∇W
λ
2 ∥W∥

2 = λW

Ryan McDonald (ASAPP) Classification AthNLP 2024 74 / 114

Support Vector Machines

Hinge-loss formulation: ℓ2 regularization already happening!

W = argminW
∑
t=1

L(W; (xt ,yt)) + λΩ(W)

= argminW
∑
t=1

max (0, 1 + max
y ̸=yt

wy · ϕ(xt)−wyt · ϕ(xt)) + λΩ(W)

= argminW
∑
t=1

max (0, 1 + max
y ̸=yt

wy · ϕ(xt)−wyt · ϕ(xt)) +
λ

2
∥W∥2

↑ SVM optimization ↑

Ryan McDonald (ASAPP) Classification AthNLP 2024 75 / 114

SVMs vs. Logistic Regression

W = argminW
∑
t=1

L(W; (xt ,yt)) + λΩ(W)

SVMs/hinge-loss: max (0, 1 + maxy ̸=yt (wy · ϕ(xt)−wyt · ϕ(xt)))

W = argminW
∑
t=1

max (0, 1 + max
y ̸=yt

wy · ϕ(xt)−wyt · ϕ(xt)) +
λ

2
∥W∥2

Logistic Regression/log-loss: log
∑

y′
t
exp(wy′

t
· ϕ(xt))−wyt · ϕ(xt)

W = argmin
W

∑
t=1

log
∑
y′
t

exp(wy′
t
· ϕ(xt))−wyt · ϕ(xt ,yt)

+
λ

2
∥W∥2

W = argmin
W

∑
t=1

∑
y′
t

P(y′
t |x)− P(yt |x)

+
λ

2
∥W∥2

Ryan McDonald (ASAPP) Classification AthNLP 2024 76 / 114

SVMs vs. Logistic Regression

W = argminW
∑
t=1

L(W; (xt ,yt)) + λΩ(W)

SVMs/hinge-loss: max (0, 1 + maxy ̸=yt (wy · ϕ(xt)−wyt · ϕ(xt)))

W = argminW
∑
t=1

max (0, 1 + max
y ̸=yt

wy · ϕ(xt)−wyt · ϕ(xt)) +
λ

2
∥W∥2

Logistic Regression/log-loss: log
∑

y′
t
exp(wy′

t
· ϕ(xt))−wyt · ϕ(xt)

W = argmin
W

∑
t=1

log
∑
y′
t

exp(wy′
t
· ϕ(xt))−wyt · ϕ(xt ,yt)

+
λ

2
∥W∥2

W = argmin
W

∑
t=1

∑
y′
t

P(y′
t |x)− P(yt |x)

+
λ

2
∥W∥2

Ryan McDonald (ASAPP) Classification AthNLP 2024 76 / 114

SVMs vs. Logistic Regression

W = argminW
∑
t=1

L(W; (xt ,yt)) + λΩ(W)

SVMs/hinge-loss: max (0, 1 + maxy ̸=yt (wy · ϕ(xt)−wyt · ϕ(xt)))

W = argminW
∑
t=1

max (0, 1 + max
y ̸=yt

wy · ϕ(xt)−wyt · ϕ(xt)) +
λ

2
∥W∥2

Logistic Regression/log-loss: log
∑

y′
t
exp(wy′

t
· ϕ(xt))−wyt · ϕ(xt)

W = argmin
W

∑
t=1

log
∑
y′
t

exp(wy′
t
· ϕ(xt))−wyt · ϕ(xt ,yt)

+
λ

2
∥W∥2

W = argmin
W

∑
t=1

∑
y′
t

P(y′
t |x)− P(yt |x)

+
λ

2
∥W∥2

Ryan McDonald (ASAPP) Classification AthNLP 2024 76 / 114

Loss Function

Should match as much as possible the metric we want to optimize at test
time

Should be well-behaved (continuous, maybe smooth) to be amenable to
optimization (this rules out the 0/1 loss)

Some examples:

• Squared loss for regression

• Negative log-likelihood (cross-entropy): multinomial logistic regression

• Hinge loss: support vector machines

• A bunch more ...

Ryan McDonald (ASAPP) Classification AthNLP 2024 77 / 114

Linear Classifier

Could not possible cover everything.
Please look at Andre Martins excellent lecture for LXMLS:

• http://lxmls.it.pt/2019/LINEAR_LEARNERS.pdf

• Also covers
• Naive Bayes
• Sub-gradient descent

• Needed for SVMs
• Perceptron update is sub-gradient with no margin

• Non-Linear Classifiers ̸= Neural Networks
• K-Nearest neighbors
• Kernel methods

Ryan McDonald (ASAPP) Classification AthNLP 2024 78 / 114

http://lxmls.it.pt/2019/LINEAR_LEARNERS.pdf

Outline

1 Terminology, notation and feature representations

2 Perceptron

3 Logistic Regression

4 Support Vector Machines

5 Regularization

6 Neural Networks

Ryan McDonald (ASAPP) Classification AthNLP 2024 79 / 114

Reminder

Linear Classifier

Handcrafted
Features

y′ = argmax
(
Wϕ(x)⊤ + b

)
, W =

...

wy
...

 , b =

...
by
...

 .

Ryan McDonald (ASAPP) Classification AthNLP 2024 80 / 114

No more ϕ

Linear Classifier

y′ = argmax (Wx+ b) , x = ϕ(x)⊤, W =

...

wy
...

 , b =

...
by
...

Ryan McDonald (ASAPP) Classification AthNLP 2024 81 / 114

Linear classifiers as Matrix Multiplication

Let w1 = [w1
1 ,w

1
2 ,w

1
3], w2 = [w2

1 ,w
2
2 ,w

2
3], w3 = [w3

1 ,w
3
2 ,w

3
3] and x = [x1, x2, x3]

Wx+ b =

 w1
1 w1

2 w1
3

w2
1 w2

2 w2
3

w3
1 w3

2 w3
3

 x1

x2
x3

+

 b1
b2
b3

=

 (w1
1 × x1) + (w1

2 × x2) + (w1
3 × x3)

(w2
1 × x1) + (w2

2 × x2) + (w2
3 × x3)

(w3
1 × x1) + (w3

2 × x2) + (w3
3 × x3)

+

 b1
b2
b3

=

 (w1
1 × x1) + (w1

2 × x2) + (w1
3 × x3) + b1

(w2
1 × x1) + (w2

2 × x2) + (w2
3 × x3) + b2

(w3
1 × x1) + (w3

2 × x2) + (w3
3 × x3) + b3

=

 w1 · x+ b1

w2 · x+ b2

w3 · x+ b3

 =

 y1

y2

y3

Ryan McDonald (ASAPP) Classification AthNLP 2024 82 / 114

On to neural networks!

Ryan McDonald (ASAPP) Classification AthNLP 2024 83 / 114

Neurons, Layers and Connections

Input
Layer

Hidden
Layer

Neuron

Output
Layer

Layer
Connections

• A (dense / fully-connected) feed-forward neural network (FF-NN)
• AKA a Multi-layer Perceptron (MLP)

• Input and output layers are special (more on this)

• However connections between layers take a similar form

Ryan McDonald (ASAPP) Classification AthNLP 2024 84 / 114

Hidden Layer Connections

Inputs: hi-1 Outputs: hi

• Let hi ∈ RDi be the i th hidden layer with Di dimensions/neurons

• hi = fi (Wihi−1 + bi)

• Wi ∈ RDi×Di−1 and bi ∈ Di are layer parameters

• fi is the layer’s (non-linear) activation function

Ryan McDonald (ASAPP) Classification AthNLP 2024 85 / 114

Activation Functions

• Non-linearity by transforming/projecting the data

• Squashes output to finite range

• Examples ...

From Hughes and Correll 2016

Ryan McDonald (ASAPP) Classification AthNLP 2024 86 / 114

Output Layer

final output
hidden classes
layer

• This was first 2/3 of the lecture!

• y′ = argmax y ; where y = Wfinalhfinal−1 + bfinal

• I.e., Wfinal = W and hfinal−1 = ϕ(x)

• yi often called the logit of yi or written logit(y)
• Various models correspond to different loss functions L(W;D)

• Logistic regression: log-loss/cross-entropy via softmax elogit(y)∑
y′∈Y elogit(y′)

• SVMs: hinge-loss

Ryan McDonald (ASAPP) Classification AthNLP 2024 87 / 114

A Wee Example

• x ∈ R2

• h = tanh(Wx+ b) with W ∈ R3×2 and b ∈ R3

• |Y| = 2 with y = W′h+ b′ with W′ ∈ R2×3 and b′ ∈ R2

• Log-loss (cross-entropy):

• L(W; (x,y)) = − log(P(y|x)) = − log elogit(y)∑
y′∈Y elogit(y′)

x0

x1

y0

h0

y1

h1

h2

tanh(
 W02*x0 +
 W12*x1 +
 b2
)

tanh(
 W00*x0 +
 W10*x1 +
 b0
)

tanh(
 W01*x0 +
 W11*x1 +
 b1
)

W’00*h0 +
W’10*h1 +
W’20*h2 +
b’0

W’01*h0 +
W’11*h1 +
W’21*h2 +
b’1

ey0

ey0 + ey1

ey1

ey0 + ey1

P(y0| x)

P(y1| x)

Often called ‘softmax’ layer

Ryan McDonald (ASAPP) Classification AthNLP 2024 88 / 114

Neural Networks So Far

• Neural network structure (FF-NN; MLP)

• Input layer: for now, assume given to us x ∈ RD

• Outputs: y ∈ Y

• Hidden layers: hi ∈ RDi ; with hi = fi (Wihi−1 + bi)
• Thus, model parameters W = {Wi , bi | ∀i}
• Including last output layer parameters

• Loss function: L(W; (x,y)) – usually log-loss/cross-entropy

Ryan McDonald (ASAPP) Classification AthNLP 2024 89 / 114

Neural Networks: Optimization

• Hidden layers make model non-convex!

• No single global optimum. Must settle for a local one.

• If loss function and activation functions are differentiable, then can be
optimized with gradient-based techniques (e.g., gradient descent)

• Gradient computation a little trickier
• Solution: backpropagation (Rumelhart et al. (1988))

Ryan McDonald (ASAPP) Classification AthNLP 2024 90 / 114

Backpropagation and the Chain Rule

• We need to compute ∇WL(W;D) = [∂L
∂w0

, ∂L
∂w1

, . . .], ∀wi ∈W

• For linear classifiers, W were feature weights
• For NNs, W is the set of all weights, e.g., W = {Wi ,bi | ∀i}

• Chain rule: z = g(y) and y = f (x), then ∂z
∂x = ∂z

∂y
∂y
∂x

• Example: Lets say L = g(z) and z = f (x , y)

• Compute all partial derivatives for L, ∂L
∂z ,

∂L
∂x ,

∂L
∂y

x

y

zf
∂L
∂z

∂L
∂y

∂L
∂z

∂z
∂y=

∂L
∂x

∂L
∂z

∂z
∂x=

∂z
∂x

∂z
∂y

Need to compute: for all variables w
∂L
∂w

Ryan McDonald (ASAPP) Classification AthNLP 2024 91 / 114

Toy Example: Analytical Partial Derivatives

All base derivativesx1

x2 h1

h2

w1*x1
+

w2*x2

x3

x4

w3*x3
+

w4*x4

u1*h1
+

u2*h2
y

L(y, y’) = (y-y’)2

We want
∂L
∂u1

∂L
∂u2

∂L
∂w1

∂L
∂w2

∂L
∂w3

∂L
∂w4

∂L
∂y = 2(y-y’)

∂y
∂h1 = u1 ∂y

∂h2 = u2

∂y
∂u1 = h1 ∂y

∂u2 = h2

∂h1
∂w1 = x1 ∂h1

∂w2 = x2

∂h1
∂x1 = w1 ∂h1

∂x2 = w2

∂h2
∂w3 = x3 ∂h1

∂w4 = x4

∂h1
∂x3 = w3 ∂h1

∂x4 = w4

w1 w2

w3 w4

u1 u2

∂L
∂u1

∂L
∂y

∂y
∂u1= = 2(y-y’)*h1 ∂L

∂w1
∂L
∂y

∂y
∂w1

∂L
∂y

∂y
∂h1

∂h1
∂w1= = = 2(y-y’)*u1*x1

Full derivation examples

Ryan McDonald (ASAPP) Classification AthNLP 2024 92 / 114

Toy Example: Backpropagation at Work

• Analytically computing chain rule in deep networks is onerous

• Backpropagation

• Forward pass: compute values at neurons and final loss
• Backward pass: compute ∂L

∂wi
at each neuron

• ∂L
∂wi

of parameter neurons form gradient

2

4 8

-5

2*2
+

4*1

-5

3

1*-5
+

0*3

0.5*8
+

1*-5
-1

2 1

1 0

0.5 1

∂L
∂y = 2(y-y’) = 4

4

∂L
∂u1

∂L
∂y=

= 4*h1 = 4*8 = 16

∂y
∂u1

16

∂L
∂h1

∂L
∂y=

= 4*u1
= 4*0.5 = 2

∂y
∂h1

2

= 2*x1 = 2*2 = 4

4

Neuron derivatives

∂L
∂y = 2(y-y’)

∂L
∂h1

∂L
∂y

∂y
∂h1=

∂L
∂h2

∂L
∂y

∂y
∂h2=

∂L
∂u1

∂L
∂y

∂y
∂u1=

∂L
∂u2

∂L
∂y

∂y
∂u1=

∂L
∂w1

∂L
∂y

∂h1
∂w1=

∂L
∂w2

∂L
∂y

∂h1
∂w2=

∂L
∂w3

∂L
∂y

∂h2
∂w3=

∂L
∂w4

∂L
∂y

∂h2
∂w4=

∂L
∂w1

∂L
∂h1

∂h1
∂w1=

Let true y = 1

Ryan McDonald (ASAPP) Classification AthNLP 2024 93 / 114

Input layer

• x ∈ RD

• What is this for language?

• Words are discreet
• Sparse or one-hot vectors used in linear classifiers?

• Parameter sparsity and computational bottlenecks
• Does not leverage flexibility of NNs

• Solution: Embrace the vector!

Ryan McDonald (ASAPP) Classification AthNLP 2024 94 / 114

Input layer

VERB

NOUN

.

.

.

.

.

.

work

• Consider classifying a word in isolation with a part-of-speech tag3

• Input is a word x ∈ RD

• There is a fixed a finite vocabulary V, i.e., x ∈ V

3This is contrived. We usually use context.
Ryan McDonald (ASAPP) Classification AthNLP 2024 95 / 114

Input layer = Embedding layer

.

.

.

.

.

.

work

• Input is a word x ∈ RD for all x ∈ V

• We store these in a |V| × D look up table
• These are the model word embeddings
• AKA embedding layer; word look-up table; ...

Ryan McDonald (ASAPP) Classification AthNLP 2024 96 / 114

Input layer = Embedding layer

• Static embedding layer
• Fixed word embeddings; not updated during training
• Examples: SVD; word2vec; glove; ...

• Dynamic embedding layer
• Randomly initialize word embeddings
• Learn during training of the full network
• Updated like any other layer during backpropagation

• Static + Dynamic
• Initialize model with static embeddings; update dynamically
• Combination: part of embedding layer is static; part is learned

Ryan McDonald (ASAPP) Classification AthNLP 2024 97 / 114

Example Static Embedding Layer: Word2Vec

• Corpus C = {X1, . . . ,X|C|}
• With sentences X = x1, . . . ,x|X|
• Vocab V = {xi |xi ∈ X and X ∈ C}
• Goal: learn vector/embedding xi for all xi ∈ V

• word2vec (Mikolov et al. (2013))
• Define two embeddings per word: xi and x′

i
• xi represents word as focus; x′

i as context
• word2vec optimizes (SkipGram model):

|C|∑
i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log p(xj+k |xj) =
|C|∑
i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log
exj ·x′

j+k∑
xl∈V e

xj ·x′
l

Maximize the probability word embedding can predict neighbours in some
context window (of size c)

Ryan McDonald (ASAPP) Classification AthNLP 2024 98 / 114

Example Static Embedding Layer: Word2Vec

|C|∑
i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log p(xj+k |xj) =
|C|∑
i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log
exj ·x′

j+k∑
xl∈V e

xj ·x′
l

brown

The c=-2

Quick c=-1

Fox c=+1

Jumps c=+2

Example from McCormick http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Ryan McDonald (ASAPP) Classification AthNLP 2024 99 / 114

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Example Static Embedding Layer: Word2Vec

Re-writing the equation: |C|∑
i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log exj ·x′
j+k

−
 |C|∑

i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log
∑
xl∈V

exj ·x′
l

• On the left: Sum over positive contexts
• On the right: Sum over negative contexts

• Not feasible to sum over entire vocabulary

• Solution: negative sampling |C|∑
i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log exj ·x′
j+k

−
 |C|∑

i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log
∑
xl∈Vs

exj ·x′
l

• Vs is randomly sampled, i.e., Vs ⊂ V and |Vs | << |V| (often 1)

Ryan McDonald (ASAPP) Classification AthNLP 2024 100 / 114

Example Static Embedding Layer: Word2Vec

 |C|∑
i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log exj ·x′
j+k

−
 |C|∑

i

|X|∑
j

∑
−c≤k≤c,k ̸=0

log
∑
xl∈Vs

exj ·x′
l

• Parameters of the model are xi and x′
i

• xi are used as final word embeddings (x′
i usually discarded)

• Usually optimized with SGD

Fun word arithmetic artifact:

xGreece − (xCanada − xOttawa) = xAthens

Ryan McDonald (ASAPP) Classification AthNLP 2024 101 / 114

Embeddings via Language Models

• word2vec is an example of a language model

• It models the probability of a word given a context

• Pre-trained contextual language models dominate NLP: ELMO,
BERT, ROBERTA, XLNet, ..., GPT, Claude, Gemini, Llama, ...

• Transformed the field, business and potentially the economy

• Other lectures will cover RNNs, which is main building block of NN
language models and LLMs

Ryan McDonald (ASAPP) Classification AthNLP 2024 102 / 114

Input layer

.

.

.

.

.

.

work

VERB

NOUN

.

.

.

.

.

.

work

• Static (e.g., word2vec) or dynamic word embeddings give us input
layer

Ryan McDonald (ASAPP) Classification AthNLP 2024 103 / 114

Dynamic Input layer

x1

x2 h1

h2

w1*x1
+

w2*x2

x3

x4

w3*x3
+

w4*x4

u1*h1
+

u2*h2
y

L(y, y’) = (y-y’)2

We want
∂L
∂u1

∂L
∂u2

∂L
∂w1

∂L
∂w2

∂L
∂w3

∂L
∂w4

w1 w2

w3 w4

u1 u2

∂L
∂x1

∂L
∂x2

∂L
∂x3

∂L
∂x4

• Gradient now includes input neurons, ∂L
∂xi

• Every value in the entire lookup table is a parameter!

Ryan McDonald (ASAPP) Classification AthNLP 2024 104 / 114

Variable Length Inputs

• But what if input is a whole document and not just a single word?
• Feed-forward neural networks assume a fixed-length input, x ∈ RD

• Documents are not fixed length

POSITIVE

NEGATIVE

The
steak
was
cooked
to
perfection

Ryan McDonald (ASAPP) Classification AthNLP 2024 105 / 114

Variable Length Inputs: Options

1 Truncate document at fixed length K, x ∈ RK×D

2 Average embeddings (below), x ∈ RD

3 convolutional and recurrent neural networks4

POSITIVE

NEGATIVE

The

steak

was

cooked

to

perfection

Average

4RNNs next lecture
Ryan McDonald (ASAPP) Classification AthNLP 2024 106 / 114

Convolutional Neural Networks

POSITIVE

NEGATIVE

<sos>

The

steak

was

cooked

to

perfection

<eos>

Pooling Layer

MLP

MLP

MLP

MLP

MLP

MLP

MLP

MLP

Convolutional
Layer

padding
MLP

receptive field

filters

Waibel et al. (1989) is often cited
as earliest example of a CNN

Ryan McDonald (ASAPP) Classification AthNLP 2024 107 / 114

Convolutional Neural Networks

• Convolutional layer
• A NN sub-architecture
• Slides over input at a fixed stride, usually 1
• Receptive field: fixed size input (e.g., n-gram)
• Filter: MLP that creates a single vector output per position
• Can be multiple filters: Almost always shared positionally; sometimes

even per layer

• Pooling layer
• Converts convolutional output to a single fixed-length vector
• Average pooling: average outputs of convolutional layers
• Max pooling: position-wise max over outputs of convolutional layers

Ryan McDonald (ASAPP) Classification AthNLP 2024 108 / 114

Deep Convolutional Neural Networks

POSITIVE

NEGATIVE

<sos>

The

steak

was

cooked

to

perfection

<eos>

MLP

MLP

MLP

MLP

MLP

MLP

MLP

Convolutional Layer Pooling Layer

Convolutional Block

POSITIVE

NEGATIVE

<sos>

The

steak

was

cooked

to

perfection

<eos>

MLPConv.
Block

Conv.
Block

Conv.
Block

Ryan McDonald (ASAPP) Classification AthNLP 2024 109 / 114

Neural Network Summary

• Feed-forward Neural Networks

• Neurons, layers and connections

• Output layers and losses

• Back propagation
• Input layers

• Static vs dynamic vs mixed

• High-level questions
• Where does layer and network structure come from?
• Why should I use neural networks?

Ryan McDonald (ASAPP) Classification AthNLP 2024 110 / 114

Where Does Network Structure Come From?

• Hyperparamters: input/hidden dimensions; activation functions; ...
• Usually empirical
• Can largely be automated

• Deep Learning = lot’s of layers

• Fully-connected/dense required?
• No!
• However, rarely does more specialized layer connections help
• Any efficiency concerns lessened by modern architectures (GPU, TPU)

Ryan McDonald (ASAPP) Classification AthNLP 2024 111 / 114

Main Points

Analytical
Backpropagation

Inputs
Sparse / Dense

Feature Engineering
Word Embeddings

One-hot
Average Dense

Convolutional-NN

Output
Binary / multiclass

Softmax or raw
Log-loss, hinge loss, ...

POSITIVE

NEGATIVE

The
steak
was
cooked
to
perfection

Model
Perceptron

Logistic Regresion
SVM

...
Feed-Forward-NN
Convolutional-NN

∇w L(w, D) → (S)GD

Ryan McDonald (ASAPP) Classification AthNLP 2024 112 / 114

Main Points in Words

• Sparse (binary) vs. dense (embeddings) features

• Optimization: Use gradient-based techniques
• Linear Classifiers

• Usually sparse features with block representations
• Loss functions define model (Log reg vs. SVMs)
• Regularization necessary for good performance

• Neural Networks
• Final layer = linear classifiers
• Hidden layers = non-convex
• Compute gradient with backpropagation
• Input layer: static (e.g., word2vec) vs. dynamic (backprop)
• Input layer: Usually dense look-up table

Ryan McDonald (ASAPP) Classification AthNLP 2024 113 / 114

References I

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed representations of words and phrases and
their compositionality. In Advances in neural information processing systems, pages 3111–3119.

Minsky, M. and Papert, S. (1969). Perceptrons.

Novikoff, A. B. (1962). On convergence proofs for perceptrons. In Symposium on the Mathematical Theory of Automata.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain.
Psychological review, 65(6):386.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988). Learning representations by back-propagating errors. Cognitive
modeling, 5(3):1.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. J. (1989). Phoneme recognition using time-delay neural
networks. IEEE transactions on acoustics, speech, and signal processing, 37(3):328–339.

Ryan McDonald (ASAPP) Classification AthNLP 2024 114 / 114

	Terminology, notation and feature representations
	Perceptron
	Logistic Regression
	Support Vector Machines
	Regularization
	Neural Networks
	References
	References

