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Classifiers

"I love this movie.
I've seen it many times H
NOUN or VERB and it's still awesome." 0
How does sodium bicarbonate work ? "This movie is bad.

I don't like it it all. —_—

It's terrible."

INBox

- QDO Set my alarm tomorrow for 1@am -> Alarm
+»| clAssIFER |-

SPAM FOLDER Quickest way to Boston -> Navigation

Why is there summer and winter -> Answer seeking
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® Focus: machine learning fundamentals

® Specific to language as input modality
® Not specific applications

® |f you miss a detail, don't worry

® |mportant to get broad concepts
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Linear Classifiers

This lecture is 2/3 about linear classifiers!

Why? It's 2024 and everybody uses neural networks.

® The underlying machine learning concepts are the same
® The theory (statistics and optimization) are much better understood

® |inear classifiers are a component of neural networks.
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Linear Classifiers and Neural Networks
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Linear Classifiers and Neural Networks
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Linear Classifiers and Neural Networks
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Linear Classifiers and

® Transformers: 99% of LLMs/GenAl

Output
Probabilities

Add & Norm

Feed
® ChatGPT; GPT4*
® Claude AGd & Norm
* Gemini T
® Llama* e
i N
® Last layer = linear classifier —— e
. Attention Attention
® Last layer predicts next word/token X %) X ’
- L
B Hrs Positional Positional
® |.e., last layer is a classifier! Encoting (@ Q) Freoang
Input Output
I Embedding l I Embedding I
Inputs Outputs
(shifted right)
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Binary Classification: Spam Detection

Task: Identify if an incoming email/SMS/DM/etc. is spam or not.

This is a binary classification problem.

SPAM

CLASSIFIER

SPAM
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Multiclass Classification: Topic Labeli

Task: given a news article, determine its topic (politics, sports, etc.)

This is a multi-class classification problem.

Z AlphaGo Beats Go Human Champ: sports
Godfather Of Deep Learning Tells Us Do L.
& Not Be Afraid O Al politics
[P technol ogy
economy
weather
culture
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Let’s Start Simple

® Example 1 — sequence: * ¢ o; label: —1
® Example 2 — sequence: x O A; label: —1
® Example 3 — sequence: x A #; label: +1
® Example 4 — sequence: ¢ A o; label: +1

Ryan McDonald (ASAPP) Classification AthNLP 2024 9/114



Let’s Start Simple

® Example 1 — sequence: * ¢ o; label: —1
® Example 2 — sequence: x O A; label: —1
® Example 3 — sequence: x A #; label: +1
® Example 4 — sequence: ¢ A o; label: +1

® New sequence: x ¢ o; label ?

Ryan McDonald (ASAPP) Classification AthNLP 2024 9/114



Let’s Start Simple

® Example 1 — sequence: * ¢ o; label: —1
® Example 2 — sequence: x O A; label: —1
® Example 3 — sequence: x A #; label: +1
® Example 4 — sequence: ¢ A o; label: +1

® New sequence: x ¢ o; label —1

® New sequence: x ¢ Q; label ?

Ryan McDonald (ASAPP) Classification AthNLP 2024 9/114



Let’s Start Simple

® Example 1 — sequence: * ¢ o; label: —1
® Example 2 — sequence: x O A; label: —1
® Example 3 — sequence: x A #; label: +1
® Example 4 — sequence: ¢ A o; label: +1

® New sequence: x ¢ o; label —1
® New sequence: x ¢ Q; label —1

® New sequence: x A o; label ?

Ryan McDonald (ASAPP) Classification AthNLP 2024 9/114



Let’s Start Simple

® Example 1 — sequence: * ¢ o; label: —1
® Example 2 — sequence: x O A; label: —1
® Example 3 — sequence: x A #; label: +1
® Example 4 — sequence: ¢ A o; label: +1

® New sequence: x ¢ o; label —1
® New sequence: x ¢ Q; label —1

® New sequence: x A o; label ?

Why can we do this?
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's Start Simple: Machine Learning

® Example 1 — sequence: x ¢ o; label: —1
® Example 2 — sequence: x O A; label: —1
® Example 3 — sequence: x A #; label: +1
® Example 4 — sequence: ¢ A o; label: +1

® New sequence: x ¢ Q; label —1

Label —1 Label +1
_ count(» and —1) _ 2 _ __ count(x and +1) _ 1 _
P(—1lx) = —countx) = 3 = 0.67 vs. P(+1]*) = —Count(x)  — 3~ 0.33
_ count(e and —1) _ 1 _ _ count(e and +1) _ 1
P(—10) = ~—count(e) ~ — 2= 0.5 vs. P(+1]0) = —Count(e) ~ — 2 0.5
_ count(@ and —-1) _ 1 _ _count(® and +1) _ o _
P(—1|90) = T Count(@) T 1= 1.0 vs. P(+1|9) = —count(@) T 1= 0.0
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's Start Simple: Machine Learning

® Example 1 — sequence: x ¢ o; label: —1
® Example 2 — sequence: x O A; label: —1
® Example 3 — sequence: x A #; label: +1
® Example 4 — sequence: ¢ A o; label: +1

® New sequence: x A o; label 7

Label —1 Label +1
_ count(x and —1) _ 2 _ __ count(x and +1) _ 1 _
P(—1lx) = ~count(x) ~ — 3= 0.67 vs. P(+1]*) = —Count(x)  — 3~ 0.33
_ count(a and —1) _ 1 _ _ count(a and +1) _ 2 _
P(—1]A) = —count(ay =3 =033 vs. P(+1|A) = —count(a) = 5 =067
_ count(oand —1) _ 1 _ _ count(o and +1) _ 1 _
P(—1J0) = 7“)3“(0) =5 =05vs. P(+1fo) = 7“)3“(0) =5=05
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Machine Learning

@ Define a model/distribution of interest
® Make some assumptions if needed
© Fit the model to the data

Ryan McDonald (ASAPP) Classification AthNLP 2024 11/114



@® Terminology, notation and feature representations
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Some Notation: Inputs and Outputs

® Input x € X
® e.g., a news article, a sentence, an image, ...

e Qutputy €Y
® e.g., spam/not spam, a topic, a translation, an image segmentation

® Input/Output pair: (z,y) € X x Y
® e.g., a news article together with a topic
® e.g., a email together with a spam/no spam label
® e.g., an image partitioned into segmentation regions
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Supervised Machine Learning

® We are given a labeled dataset of input/output pairs:

D= {(mtvyt) @1 CXxY

Goal: use it to learn a classifier h : X — Y that generalizes well to
arbitrary inputs.

At test time, given x; € X, we predict

/

y = h(xzy).

Hopefully, vy’ ~ y; most of the time.
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Things can go by different names depending on what Y is...
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Regression

Deals with continuous output variables:

® Regression: Y =R
® e.g., given a news article, how much time a user will spend reading it?

¢ Multivariate regression: Y = RX, where K > 1
® e.g., predict the X-Y coordinates in an image where the user will click
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Classification

Deals with discrete output variables:

¢ Binary classification: Y = {£1}
® e.g., spam detection, positive/negative sentiment

¢ Multi-class classification: Y = {1,2,..., K}
® e.g., topic classification, positive/negative/neutral sentiment

® Structured classification: Y exponentially large and structured
® e.g., machine translation, caption generation, image segmentation

What about GenerativeAl?
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Feature Representations

Feature engineering is an important step in linear classifiers:

® Bag-of-words features for text, also lemmas, parts-of-speech, ...
® Embeddings (e.g., word2vec)
® SIFT features and wavelet representations in computer vision

® External database, APIs and knowledge resources
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Feature Representations

We need to represent information about «
Typical approach: define a feature map ¢ : X — RP
® ¢(x) is a high dimensional feature vector

We can use feature vectors to encapsulate Boolean, categorical, and
continuous features

® To start, we will focus on sparse binary features

® (Categorical features can be reduced to a range of one-hot binary
values

® We look at continuous (dense) features in neural networks
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® 1 is a document and y is a topic

1 if & contains the word “interest”
0 otherwise

8@ = {
¢;(x) = % of words in = with punctuation
® x is a word and y is a part-of-speech tag

1 if £ ends in “ed”
0 otherwise

¢j(z) = {
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Feature Representati

® x is a name

_ 1 if & contains “George”
Pbo(z) *{ 0  otherwise

_ 1 if & contains “Washington”
P1(=) = { 0  otherwise

_ 1 if « contains “Bridge”
$2(z) = { 0  otherwise

b3(m) =

1  if & contains “General”
0  otherwise

1 if @ contains an unknown word

ba(x) = { 0  otherwise

® x=General George Washington — ¢(x) =[1 101 0]

® x=George Washington Bridge — ¢(x) =[1 11 0 0]

® x=George Washington University — ¢(x) =[1 100 1]

® x=George George George of the Jungle — ¢p(x) =[1 000 1]
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Feature Engineering and NLP Pipelines

Classical NLP pipelines consist of stacking together several linear classifiers

Each classifier's predictions are used to handcraft features for other
classifiers

Example: Part-of-speech — Named Entities — Topic Classification

® Part-of-speech: nouns, determiners for Typed Named Entities
® E.g., Google noun vs. Google verb
® Typed Named Entities: Categories for topic classification

® E.g., Which George Washington? Person, University/Organization,
Bridge/Location?
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Let's assume a multi-class classification problem, with || labels (classes).
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Linear Classifiers — Weights/Parameters

® Parametrized by a weight vector w € RP (one weight per feature)
e Eg, D=5 w=][0.3,1.2,-5.4,3.8,—0.09]
® ¢(x) and w are vectors of same length — D

® We actually need |Y| weight vectors w,, € RP
® j.e., one weight vector per output label y
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Linear Classifiers — Weights/Parameters

® | Important Concept !

® w, is weight/parameter vector for output label y
® Let W= [ws,...,wy|]

® Wis a concatenation of all w,,

® Example
® w; = [171], wo = [2,2], w3 = [3,3] for |H| =3
® Then W=[1,1,2,2,3,3]

Ryan McDonald (ASAPP) Classification
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Linear Classifiers — Predictions

® The score (or probability) of a particular label is based on a linear
combination of features and their weights

e At test time, predict the class y’ which maximizes this score:

/
= arg max Wy - O(x) = arg max E W; 4 - Oi(x
Y g ey Y o(x) g ey : iy ?i(x)

® At training time, different strategies to learn w,,’s yield different
linear classifiers: perceptron, logistic regression, SVMs, ...
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Linear Classifiers — Example

D =5, Y = {Person (per), Location (loc)}

’lUper == [03, 12, *54, 38, *009]

W), = [-0.6,2.4,4.0, ~2.1,0.1]

¢ 1 =George Washington Bridge — ¢(x) =[1,1,1,0,0]

y =arg  max wy - d(x)
ye{loc,per}
—arg  max {[-06,24,4.0,-2.1,0.1];,. - [,1,1,0,0],
ye{loc,per}

[0.3,1.2,~5.4,3.8,—0.09]per - [1,1,1,0,0] }

=arg  max  {5.8|yc, —3.9per}
ye{loc,per}

= loc
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Linear Classifiers — Bias Terms

Often linear classifiers are presented as

/

Yy = argmax wy - d(x)+ by
yeY

where by, is a bias or offset term

This can be folded into ¢(x) via a constant feature

e le., ¢(x) = [p(x), 1]

For now, we assume this for simplicity
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Commonly Used Notation in Neural Networks

/

Handcrafted
Features Cat

Linear Classifier

y' = argmax (W(ﬁ(w)T + b) , W= wy |, b= by
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Binary Linear Classifier

With binary labels (Y = {£1}) we often use a minimal parametrization:

"= a a : +b
y g max, wy () + by
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Binary Linear Classifier

With binary labels (Y = {£1}) we often use a minimal parametrization:

= 2 a . + b
y g max, wy (x) + by

+1 ifwir-@d(x) + byr > w1 - p(x) + by
—1 otherwise

Ryan McDonald (ASAPP) Classification AthNLP 2024 30/114



Binary Linear Classifier

With binary labels (Y = {£1}) we often use a minimal parametrization:

= 2 a . + b
y g max, wy (x) + by

_ 1 ifwir - @(®) + by > wor - P(x) + by
- —1 otherwise

_ 41 it (wa —woa) - @(x) + (byr — b1) >0
—1 otherwise
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Binary Linear Classifier

With binary labels (Y = {£1}) we often use a minimal parametrization:

= 2 a . + b
y g max, wy (x) + by

_ 1 ifwir - @(®) + by > wor - P(x) + by
—1 otherwise

+1 if (w+1 — 'w_1) . ¢(:13) + (b+1 — b_1) >0
—1 otherwise

= sign((wy1 — w_1) -@(x) + (by1 — b_1)).
——— —_——

v c

That is: only half of the parameters are needed.
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Binary Linear Classifier

Then (v, ¢) is an hyperplane that divides all points:

2 \
== Points along line

have scores of 0
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Multiclass Linear Classifier

Defines regions of space.

Ryan McDonald (ASAPP) Classification AthNLP 2024 32/114



Linear Separability

® A set of points is linearly separable if there exists a w such that
classification is perfect

Separable Not Separable
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® Machine Learning = finding weights/parameters W/w
e Using data! Specifically D = {x¢, Yt } =1

® There are many algorithms for doing this
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Outline

® Perceptron
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Perceptron (Rosenblatt, 1958)

® |nvented in 1957 at the
Cornell Aeronautical
Laboratory by Frank
Rosenblatt

® |mplemented in custom-built
hardware as the “Mark 1
perceptron,” designed for
image recognition

® 400 photocells, randomly
connected to the “neurons.”
Weights were encoded in
potentiometers

® Weight updates during
learning were performed by
(Extracted from Wlklpedla) electric motors.
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Perceptron in the News...

NEW NAVY DEVICE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer,
today that it expects will be
able to walk, talk, see, write,
reproduce itself and be . con-|
scious of its existence,

The embryo—the Weather,
Bureau's $2,000,000 “704” com-|
puter—learned to differentiate
between right and left after|
fifty aftempts in the Navy's
demonstration for newsmen.,

The service said it would use|
this principle to build the first|
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
|signer of the Perceptron, con-
ducted the demonstration. He
said ‘the machine would be the
first device to think as the hu-

man brain. As do human be-

Ryan McDonald (ASAPP)

ings, Perceptron will make mis-
takes at first, but will grow,|
wiser as it gains experience, he
said. .

Dr. Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, Buf-
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers.

‘Without Human Controls

The Navy said the perceptron
would be the. first non-living
mechanism “capable of receiv-
ing, recognizing and identifying
its surroundings without -any
human training or control.” I

The “brain” is designed to
remember images and informa-
tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape. .

Later Perceptrons will be able
to recognize people and call out
their names and instantly trans-
late speech in one language to
speech or writing in another
language, it was predicted.

Mr, Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce themselves on an assembly
|line and which would be con-
|scious of their existence.

Classification

1958 New York
Times...

In today’'s demonstration, the
“704” was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing

In the first fifty trials, the
machine made no distinction be-
tween them. It then started
registering a “Q” for the left
squares and “O” for the right
squares.

Dr. Rosenblatt said he could
explain why the machine
learned only in highly technical
terms. But he said the computer
had undergone a ‘“self-induced
change in the wiring diagram.”
The first Perceptron will
have about 1,000 electronic

jon cells” T g
electrical impulses from an eye-
like scanning device with
photo-cells. The human brain
has 10,000,000,000 responsive
cells, including 100,000,000 con-
nections with the eyes.

AthNLP 2024
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Perceptron Algorithm

® Online algorithm: process one data point at each round
® Take x;; apply the current model to make a prediction for it
® |f prediction is correct, proceed
® Else, correct model: add feature vector w.r.t. correct output &
subtract feature vector w.r.t. predicted (wrong) output
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Perceptron Algorithm

input: labeled data D
initialize W0 = 0, i.e., wy =0, Vy
initialize k =0
repeat
update wg,kﬂ) wgk), Yy
observe example (z:,y:) € D
predict ¢y’ = arg maxycy wgk) - p(xy)
if ¥y’ # y; then
update w(kH) wé’i) + ¢(xy)
update 'w(kﬂ) 'wgf) — ¢(x)
end if
increment k
until maximum number of epochs
output: model weights w
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Perceptron’s Mistake Bound

A couple definitions:

® the training data is linearly separable with margin v > 0 iff there is a
weight vectors u, with |luy | =1 such that

’U,yt : d)(ml’) 2 uy’ : ¢(xt) + 7> VI, Vy/ 75 Y.

® radius of the data: R = max; ||¢(x:)|.
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Perceptron’s Mistake Bound

A couple definitions:

® the training data is linearly separable with margin v > 0 iff there is a
weight vectors u, with |luy | =1 such that

’U,yt : d)(ml’) 2 uy’ : ¢(wt) + 7> VI, vy/ 75 Y.
® radius of the data: R = max; ||¢(x:)|.

Then we have the following bound of the number of mistakes:

Theorem (Novikoff (1962))

The perceptron algorithm is guaranteed to find a separating hyperplane
2 o
after at most 2%— mistakes.

Proof: https://proceedings.mlr.press/v97/beygelzimeri9a/beygelzimeri9a-supp.pdf
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What a Simple Perceptron Can and Can’t Do

® Remember: the decision boundary is linear (linear classifier)
® It can solve linearly separable problems (OR, AND)

OR (x1,$2) ‘AND (x_lv fl'fg) AND (xlvx_Q)

A 4 ,
I~ A A ! A s O I o o,
N N N /7 N y;
) N ) , ) ,
N 7
0 o A o], o o 0 o 7 A
/7
N > ’ >
0 I 0 I 0 o
xrq T T
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What a Simple Perceptron Can and Can’t Do

® . but it can’t solve non-linearly separable problems such as simple
XOR (unless input is transformed into a better representation):

XOR (1, x2) XOR (z1, x9)
T A
I A o |i«| NA
g ? =N RN
0 o) A % 0 o LA
5 < NI
0 L 0 L
T AND (.T_l, .’132)
XOR(Xl, X2) = XOR(AND(X71, Xg), AND(Xl, 72))

® Result attributed to Minsky and Papert (1969) but was known before.
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Is it any good in practice?

Until 2013/2014, perceptron variants were pretty close to state-of-the-art

Hall et al. 2012: Named-entity recognition

Huang et al. 2012: Part-of-speech tagging
Li et al. 2013: Event/relation extraction
Yu et al. 2013: Machine Translation
Bohnet et al. 2016: Syntactic parsing

We are going to cover more complex and principled linear classifiers

However, they rarely were significantly better than perceptron variants in
practice.
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© Logistic Regression
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Logistic Regression

Define a conditional probability:

exp(wy - ¢(z))

P(y|z) = 7 , where Z; = Z eXP(’wy’ - ¢(x))

y'eY
Critically >, P(y|z) =1 and P(y|z) > 0, Vy
Exponentiating and normalizing is called the softmax transformation?

Note: still a linear classifier

argmax P(y|x) = argmax exp(wy - $(z))
Yy y Z?I:
= argmax exp(wy - ¢(x))
]

= argmax wy - ¢(x)
Yy

2More later during neural networks!
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Logistic Regression

Pr(ala) = 20t )

® Let W= [wy,...,w)y|] be a vector concatenating all weights w,,
How do we learn W?

® Set W to minimize the negative conditional log-likelihood:

t=1 t=1

W = argmin—log (pr(yt|wt)>:argr%n—zlogpw(ytm)
= argmin 3 | log Y- expluy - @)y, o) |
= y’

i.e., set weights to assign as much probability mass as possible to the correct
labels!
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Logistic Regression

® This objective function is convex

® Therefore any local minimum is a global minimum

® No closed form solution, but lots of numerical techniques

® Gradient methods (gradient descent, conjugate gradient)
® Quasi-Newton methods (L-BFGS, ...)
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Recap: Convex functions

Pro: Guarantee of a global minima v/

/

) R (v, 7 (9))
(w,f(:c% - /

S _—

Figure: lllustration of a convex function. The line segment between any two
points on the graph lies entirely above the curve.
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Recap: Gradients

A gradient of a function f(W) wrt parameters W = [w, ..., wp] is:
0 0
VwfW) = | —fF, ..., —fF
w ( ) [8W1 8Wp ]

l.e., the vector of partial derivatives of f, which is the derivative of f wrt
to each variable w;

The gradient gives the direction and fastest rate of increase of f at point
W

When a gradient is zero we are at a stationary point of f. For convex
functions that means global minima.
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Recap: Iterative Descent Methods

Goal: find the minimum/minimizer of f : RY — R

® Proceed in small steps in the optimal direction till a stopping
criterion is met (usually norm of gradient is small)
¢ Gradient descent (GD) updates: w(**1) « w(k) — 5, Vf(wk))

Figure: lllustration of gradient descent. The red lines correspond to steps taken
in the negative gradient direction.
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Logistic Regression: Gradient Descent (GD)

o Let L(W; (2,9)) = (log 32, exp(w), - $())~wy - (x))

® (Call this our loss function for instance x,y
® We want to minimize over D = {(x;, y;)}+=1 with GD

® le, Find argminyg >, ; L(W; (¢, yt))
® |ogistic-regressions loss function often called log-loss or cross-entropy

® GD update will look like

WKL — WK — Vo (5,1 LOW; (4, 91)))
= W — > VwL(W; (2, y1))

® Need to calculate VywL(W; (x,y)): gradient of L w.rt. W

® This is a batch optimization: updates are over whole dataset
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Gradient Descent (SGD)

SGD is like perceptron — update every instance:

® Pick (z¢,y:) randomly
e Update WKt = Wk — 0 Vo L(W; (4, y1))

® j.e. we approximate the true gradient with a noisy, unbiased, gradient,
based on a single sample

® Variants exist in-between (mini-batches)

® GD and SGD guaranteed to find the optimal W (for suitable step
sizes)
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Logistic Regression: Simple SGD Algorithm

input: labeled data D, step sizes 19, 71, - . -
initialize W = 0, i.e., wl") = 0, Vy
initialize k =0
repeat
observe example (z,y:) € D
Update WKL = Wk — 0, V1o L(W; (¢, y:))
increment k
until stopping criterion
output: model weights W

® Picking step sizes example of hyperparameter tuning
® Stopping criterion usually gradient is small: ||V L(W; (¢, y¢))|| <€, Vt

® Small (or zero) gradient is stationary point — global minimum
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Computing the Gradient: VywL(W;(x:, y;))

® We need VyyL(W; (x,v)), where

L(W; (,y)) =log Y _ exp(wy - p(x))—wy - p(x)
y/
W = ['wl,...,wy/,...,wy,...,w|y|]
Some reminders:

O Vi log F(w) = g5V F(w)
@ Vo exp F(w) = exp(F(w)) Ve F (w)

Ryan McDonald (ASAPP) Classification AthNLP 2024 54 /114



Computing the Gradient

Vw (Iog Z exp(wy - P(x))—wy - d)(az))

y’

VwL(W; (z,y))

= Vw IogZeXp(wy/ - @(w))—Vwwy - ()

y’

) Z ol @) 2 7 R H@) Vs - 9(a)

= Z exp(w x))Vww,y - ¢p(x)—Vwwy - (x)

= > eXp(z—;d)())vwwy/ - ¢(@)=Vwwy - $()

y’

= Y Pw(y[x)Vwwy - ¢(x)—Vwwy - ¢().

y’
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Computing the Gradient

Vwl(W;(z,y)) =>_, Pw(y[x)Vwwy - ¢(z)-Vww,y - ¢(z)

Let's look at the partial derivative wrt to a variable /: 83/’_ L(W; (x,y))

Remember that W = [wy, ..., wy/, ..., wy, ..., wy|]
Cases:

@ i indexes a weight w; in W that is in wy,
> P/ |e)—w, - $(@) — —w, - B(x) = Pw(yl2)ei(w)~bi(=)
i 8w,- v aW,' v

@ i indexes a weight w; in W that is in w,, where 3y’ # y

S Py @)y - $(@) — 5wy - D) = Puly2)di()
o i i
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What does the update look like?

Cases:

@ For true output y
wytt = wy — 1 (Py(ylz)(z)-p())

O Fory #y
wz,’Ll = wéjl —n (Pw(y'|z)p(x))
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SGD for Logistic Regression

input: labeled data D, step sizes ng, 71, . . .

initialize W =0, i.e., w{”) =0, vy

initialize k =0

repeat
observe example (¢, y:) € D
w ™t = wy, — i (Pw(yelz)p(x)—¢(x))
wit = wl — i (Pw(y'[z)p(x)) for ¥ # ye
increment k

until stopping criterion

output: model weights W
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Logistic Regression Summary

® Define conditional probability

exp(w - ¢(x,y))
Ly

Pw(y|z) =
® Set weights to minimize negative conditional log-likelihood:

W = arg miny, Z — log Pyw(yt|x:) = argmin,, Z L(W; (¢, yt))
t t

® Can find the gradient and run gradient descent (or any gradient-based
optimization algorithm)
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The Story So Far

® | ogistic regression is discriminative: maximizes conditional likelihood

® also called log-linear model and max-entropy classifier
® no closed form solution
® For training instance (x,y), SDG updates look like

wytt = wy + 1 (p(z) - Pw(ylz)(z))
wet = wy —n(Pw(y'z)p(x)) fory' #y
® Perceptron is a discriminative, non-probabilistic classifier
® For training instance (i, y), updates look like

wy ™ = wy, + ¢()

k+1 _ o k /
w, T =wy —@(x) fory' #y

SGD updates for logistic regression and perceptron’s updates look similar!
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Classification Margin

® For a training set D

® Margin of a weight vector W is largest y such that

Wy, - P(Tt) — Wy - P(Te) >y

e for every training instance (z;,y:) € D,y Ay €Y
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Classificat

Training Testing

Denote the
value of the -
margin by ~
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Maximizing

Intuitively maximizing margin makes sense

More importantly, generalization error to unseen test data is
proportional to the inverse of the margin

R2

EX —(/——m—
72 x |D|

Perceptron:
® |f a training set is separable by some margin, the perceptron will find a
w that separates the data
® However, the perceptron does not pick w to maximize the margin!

Logistic Regression:
® Not guaranteed to even separate data
® softmax & log-loss is a margin-like optimization
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O Support Vector Machines
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Maximizing Margin

Let v >0

max
[wll<1

such that:
Wy, - G(Tr) — Wy - P(T1) >y
V(wt,yt) € @

andy' €Y, vy #y:

® Note: algorithm still minimizes error if data is separable
® ||/W|| is bound since scaling trivially produces larger margin

o W = ['wl,...,'w|y|]

Ryan McDonald (ASAPP) Classification AthNLP 2024 65/114



Max Margin = Min Norm

Let v >0
Max Margin: Min Norm:
1
max L4 2
Wi min 3 IWI

such that: _ such that:
'wyt'¢(wt)_wy"¢(wt) > wyt'(b(mt)_wy"(f)(mt) >1

V(zt,y:) € D V(zt,y:) € D

andy' €Y,y #y; andy’' €Y, ¢y #y,

® Instead of fixing ||W)|| we fix the margin v =1

® Re-parameterize W = W/~y — [|[W|| = [|W||/y = v = |‘\|\/V\\77'”| ”Vb,“.

Ryan McDonald (ASAPP) Classification AthNLP 2024 66 /114



Support Vector Machines

1
W = arg miny, §||W||2

such that:
Wy, - P(Tr) — Wy - d(xr) > 1

V(zr,y:) €D and y' €Y, y' # y:

® Quadratic programming problem — a well known convex optimization
problem

® Can be solved with many techniques.
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Support Vector Machines

What if data is not separable?

, 1
W = arg miny 5HWH2 +CY &

t=1

such that:
Wy, - P(xr) — Wy - P(Tr) > 1 — & and & >0

V(ze,y:) €D andy' €Y, ¥y # ye

&:: trade-off between margin per example and |[W||
Larger C = more examples correctly classified
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Support Vector Machines

. A 1
W:argmlnwé EHWH2+Z€t A:E
t=1

such that:

Wy, - P(xr) — Wy - P(xr) > 1 &, V(xr,y:) €D and yvey v #uy:
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Support Vector Machines

. A 1
W:argmlnwé EHWH2+Z€t A:E
t=1

such that:

Wy, - P(xr) — Wy - P(xr) > 1 &, V(xr,y:) €D and yvey v #uy:

= wy, ¢(x:) - max wy d(xe) > 1— &, Y(wr,y:) €D
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Support Vector Machines

. A 1
W:argmlnw7§ EHWH2+Z€t A:E
t=1

such that:

Wy, - P(xr) — Wy - P(xr) > 1 &, V(xr,y:) €D and yvey v #uy:

= wy, ¢(x:) - max wy d(xe) > 1— &, Y(wr,y:) €D

= &2>1+ ym;; Wy - P(xr) — Wy, - P(xt), V(Te,y:) €D
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Support Vector Machines

. A
W = arg minyy ¢ §||V\7H2 + th

t=1

such that:

§e = 1+ max wy - (@) — wy, - $(@e), V(@ ye) €D
Hinge loss
If W classifies (xt, y:) with margin 1, penalty & = 0 (by def'n & > 0)
Otherwise penalty & = 1 + maxy/ 2y, Wy - O(Tt) — wy, - d(x;)

L(W; (z¢,yr)) = max (0,1 + max Wy - d(xt) — wy, - d(xt))
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Support Vector Machines

. A
W = arg minyy ¢ §||\/\7H2 + th
t=1

such that:

& >1+ Jl;i;(t Wy - P(Tr) — Wy, - d(x), V(Te,yr) €D
Hinge loss equivalent

] A
W = arg minyy ZL((wt,yt);W) + EIIWIIQ

t=1

. A
= arg minyy (Z max (0,1 + max wy: - P(x:) — wy, - ¢(mt))> + §||W||2

t=1
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Outline

@ Regularization
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If the model is too complex (too many parameters) and the data is scarce,
we run the risk of overfitting:

Underfitting X Balanced X Overfitting
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Regularization

In practice, we regularize models to prevent overfitting

arg minyy Z (xt,yt)) + AQ(W),

where Q('W) is the regularization function, and A controls how much to
regularize.

® Gaussian prior (f2), promotes smaller weights:
QW) = W3 =) W3
i
® Laplacian prior (¢1), promotes sparse weights!

QW) = [Wls = >~ Wi
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Logistic Regression with ¢/, Regularization

Still optimize with GD or SGD
What is the new gradient?

> Vwl(Wi (@6, ye) + ViwdQ(w)
t=1

A
= 37 VLW (e, 50)) + Vo' W)
t=1

We know VyL(W; (z¢, y:))
Just need Va3 | W2 = 2W

Ryan McDonald (ASAPP) Classification AthNLP 2024 74 /114



Support Vector Machines

Hinge-loss formulation: ¢ regularization already happening!

W = argminy Z L(W; (¢, ye)) + AQ(W)

t=1

= argminyy Z max (0,1 + Lr;a; Wy - P(Tr) — Wy, - P(xt)) + AQW)
t=1 ‘

. A
= argminy > max (0,14 max wy - b(ae) — wy, - @) + 5|
t=1

1 SVM optimization 1
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SVMs vs. Logistic Regression

W = argminy Z L(W; (¢, ye)) + AQ(W)
t=1
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SVMs vs. Logistic Regression

W = argminy Z L(W; (¢, ye)) + AQ(W)
t=1

SVMs/hinge-loss: max (0,1 4+ maxyy, (wy - ¢(x:) — wy, - ¢(xt)))

. A
W = arg minyy Z max (0,1 + n;éax Wy - P(t) — Wy, - (X)) + 5||W||2
Y7Yt

t=1
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SVMs vs. Logistic Regression

W = argminy Z L(W; (¢, ye)) + AQ(W)
t=1

SVMs/hinge-loss: max (0,1 4+ maxyy, (wy - ¢(x:) — wy, - ¢(xt)))

. A
W = arg minyy Z max (0,1 + n;éax Wy - P(t) — Wy, - (X)) + 5||W||2
Y7Yt

t=1

Logistic Regression/log-loss: log Zy; exp(wy; - p(xt))—wy, - P(xt)

. A
W=argmin} (bgzexp(wy{ (@) —wy, -¢(mt,yt)) + S Iwip
t=1 y!

W= argmin > (Z P(yile) - P(wlw)) + SIWI?
t=1

v;
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Should match as much as possible the metric we want to optimize at test
time

Should be well-behaved (continuous, maybe smooth) to be amenable to
optimization (this rules out the 0/1 loss)

Some examples:

® Squared loss for regression

® Negative log-likelihood (cross-entropy): multinomial logistic regression
® Hinge loss: support vector machines

® A bunch more ...
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Linear Classifier

Could not possible cover everything.
Please look at Andre Martins excellent lecture for LXMLS:

* http://lxmls.it.pt/2019/LINEAR_LEARNERS.pdf
® Also covers

® Naive Bayes

® Sub-gradient descent

® Needed for SVMs
® Perceptron update is sub-gradient with no margin

® Non-Linear Classifiers # Neural Networks

® K-Nearest neighbors
® Kernel methods
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Outline

® Neural Networks
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/

Handcrafted
Features Cat

Linear Classifier

y' = argmax (qu)(slz)T + b) , W= wy |, b= by
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Cat

Linear Classifier

y' =argmax (Wz +b), 2 =¢(x), W= | wy, |, b= | by,
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Linear classifiers as Matrix Multiplication

Let wy = [wll7 w21, w31], wy = [wlz, w227 w32], w3 = [wf7 w23, w33] and x = [x1, x2, x3]

1 1 1
wy w; w3 X1 by
Wz +b = W12 W22 W32 X2 + by
3 3 X
wp wy, w3 3

(W12 X x1) + (W22 X x2) + (w§ X X3)
(W x x1) + (w3 x x2) + (W] X xs)

(Wll X x1) + (W21 X Xz)—i-(w31 X X3) |: by :|
+

(Wll X x1) + (W21 X x2) + (W% X x3) + b1
(W12 X x1) + (w22 X x2) + (W32 X x3) + b2
(W3 x x1) + (W3 x x2) + (W3 x x3) + b3

wi-x+ by Y1
= wy - T+ by = Y2
w3 - x+ bs Y3
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On to neural networks!

0= ©
N ///"‘\"’0;,”/’\
N7, 055,78
& i S " '/
R “-.“\".*’o"::'.f\ ) Dog
KA ERIR: S
% > - 0} %

r,-.\-:'..::" 9= ) Cat

0
HARK RN
"A’A\\\V&"vf\-‘_:
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Neurons, Layers and Connections
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! Hidden | S\ Y Neuron
i Layer | e ;

® A (dense / fully-connected) feed-forward neural network
® AKA a Multi-layer Perceptron (MLP)

® Input and output layers are special (more on this)
® However connections between layers take a similar form

Ryan McDonald (ASAPP)
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Hidden Layer Connections

Inputs: h,_, Outputs: h,

e Let h; € RP be the it" hidden layer with D; dimensions/neurons
® h; = fi(W;hi_1 + b;)
e W, € RP*Di-1 and b; € D; are layer parameters

® f; is the layer's (non-linear) activation function
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Activation Functions

® Non-linearity by transforming/projecting the data
® Squashes output to finite range

® Examples ...

Sigmoid

10 Hyperbolic Tangent
0.5 N .
0.0 = e —€

-0 #(z) prpp

-1.0

Rectified Linear

o itz=<0
Clz ifz>0

o(z)

lorvwama

Ryan McDonald (ASAPP)
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Output Layer

final
hidden
layer

output
classes

This was first 2/3 of the lecture!
° y/ = argmaxy; where y = Wﬁnalhﬁnal—l + bﬁnal

® le, Whya = W and hgpai-1 = ¢(x)
® y; often called the logit of y; or written logit(y)
[ ]

Various models correspond to different loss functions L(W; D)
elogit(y)

® Logistic regression: log-loss/cross-entropy via softmax et
y'ey

® SVMs: hinge-loss
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A Wee mple

o xr cR?
® h = tanh(Wz + b) with W € R3*2 and b € R3
* |Y| =2 with y = Wh + b’ with W € R?*3 and b’ € R?
® Log-loss (cross-entropy):
elogit(y)

* L(Wi(z,y)) = —log(P(ylz)) = —log =&

tanh( Often called ‘softmax’ layer
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Neural Networks So Far

® Neural network structure (FF-NN; MLP)

® Input layer: for now, assume given to us € RP
® Qutputs: y €Y

® Hidden layers: h; € RP; with h; = f;(W;h;_; + b;)
® Thus, model parameters W = {W,, b; | Vi}
® |ncluding last output layer parameters

® Loss function: L(W;(x,vy)) — usually log-loss/cross-entropy
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Neural Networks: Optimization

® Hidden layers make model non-convex!
® No single global optimum. Must settle for a local one.

® |f |oss function and activation functions are differentiable, then can be
optimized with gradient-based techniques (e.g., gradient descent)

® Gradient computation a little trickier
® Solution: backpropagation (Rumelhart et al. (1988))
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Backpropagation and the Chain Rule

® We need to compute VywL(W; D) = [8W0, Sure o YW €W

® For linear classifiers, W were feature weights

® For NNs, W is the set of all weights, e.g., W= {W,, b; | Vi}
* Chain rule: z=g(y) and y = f(x), then 92 = g—;%
® Example: Lets say L = g(z) and z = f(x, y)

oL 9L IL

* Compute all partial derivatives for L, 32, 5=, 5

oL .
Need to compute: w for all variables w

oL _dL oz

ox T az ox
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Toy Example: Analytical Partial Derivatives

{ All base derivatives

x1 !
el L,
e 2(y-y')
9y 9
o —N ) = (yy')? ot =Y gna=u2
oy o
aul h au2 h2
oh1_ . oh1_
x3 i 1 ow x2
P ohi_ g on1_ o
i We want : axi VeV
oL oL oL ol o o
x4 i oul du2 dwl dw2 ow3 w4 | oh2_ o ohl_ .
¥ ow3 owd
Poohl_ . ah1_
o e e
! Full derivation examples N B
Pl oLy o oL oL dy _ oL dy ahl L e
L aut T oy qut TR0 1T ay awi oy antowt 20U
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Toy Example: Backpropagation at Work

® Analytically computing chain rule in deep networks is onerous
® Backpropagation

® Forward pass: compute values at neurons and final loss

® Backward pass: compute % at each neuron

° % of parameter neurons form gradient
l

oL _ oL dhlopayq=p0=4 oL _ oL gy eI
awl = oh1 w1 aul ~ ay aul "N .
euron derivatives
=4'h1=48=16
aL B
e 2(y-y)
2
oL o gy
o1 = 3y ant
oL _a gy
oh2 = 3y ah2
4 A _a gy
aut dy aul
oL _a gy
a2~ ey éul
o _ o am
5 w1 = 3y awi
L AL oL ant
EN 2y-y)=4 2= 3y owa
oL _a o
w3~ 3y w3
8 Lettruey =1 a%tzﬁaiz
3y owa
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Input layer

e xcRPD
® What is this for language?
® \Words are discreet

® Sparse or one-hot vectors used in linear classifiers?

® Parameter sparsity and computational bottlenecks
® Does not leverage flexibility of NNs

® Solution: Embrace the vector!

Ryan McDonald (ASAPP) Classification AthNLP 2024 94 /114



Input layer

O =772
Ny

\ 24
i/
K A
Vi

S

o

work

e Consider classifying a word in isolation with a part-of-speech tag?
® Input is a word € RP

® There is a fixed a finite vocabulary V, i.e., x €'V

3This is contrived. We usually use context.
Ryan McDonald (ASAPP)
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Input layer = Embedding layer

Q0000
00000
O0000

i

work —~{00000

00000

i

e Inputis a word & € RP forall z € V
® We store these in a |V| X D look up table

® These are the model word embeddings
® AKA embedding layer; word look-up table; ...
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Input layer = Embedding layer

® Static embedding layer

® Fixed word embeddings; not updated during training
® Examples: SVD; word2vec; glove; ...

® Dynamic embedding layer
® Randomly initialize word embeddings
® |earn during training of the full network
® Updated like any other layer during backpropagation
® Static + Dynamic
® |nitialize model with static embeddings; update dynamically
® Combination: part of embedding layer is static; part is learned
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Example Static Embedding Layer: Word2Vec

Corpus € = {X1,...,Xje}
With sentences X = @1, ...,y
Vocab V = {x;|z; € X and X € C}

Goal: learn vector/embedding x; for all ; € V

word2vec (Mikolov et al. (2013))

® Define two embeddings per word: x; and x/
® x; represents word as focus; &} as context
® word2vec optimizes (SkipGram model):

€] |X] el x| &% Tk

ZZ > logp(xikl) ZZ > o8
i z/EVeJI

—c<k<c,k#0 j —c<k<c,k#0

Maximize the probability word embedding can predict neighbours in some
context window (of size c)
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Example Static Embedding Layer: Word2Vec

€] |X] el x| oI Tk
E E > log p(xj+k|x;) = E E Y 'Ogm
i —c<k<c,k#0 i —c<k<c,k#0 €V
Source Text Training
Samples

The c=-2 fox jumps over the lazy dog. = (the, quick)

(the, brown)
Quick c=-1 The fox jumps over the lazy dog. ==  (quick, the)

(quick, brown)

(quick, fox)
brown

|The|quick-fox|jumps|over the lazy dog. ==  (brown, the)
(brown, quick)

(brown, fox)

(brown, jumps)

Fox c=+1

Jumps c=+2 The| quickl brown - jumps| over | the lazy dog. == (fox, quick)
(fox, brown)

(fox, jumps)

(fox, over)

Example from McCormick http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
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Example Static Embedding Layer: Word2Vec

Re-writing the equation:

el x| el x|

ZZ S loge®iTin | — ZZ ST log ) em

—c<k<c,k#0 j —c<k<c,k#0 x, eV

® On the left: Sum over positive contexts
® On the right: Sum over negative contexts
® Not feasible to sum over entire vocabulary

® Solution: negative sampling

el x| e 1X]

Z Z Z log &% Tk Z Z Z log Z o

—c<k<c,k#0 j —c<k<c,k#0 x/EVs

® V. is randomly sampled, i.e., Vs C 'V and |Vs| << |V| (often 1)
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Example Static Embedding Layer: Word2Vec

el x| e 1X]

Z Z Z log R Z Z Z log Z o)

—c<k<c,k#0 j —c<k<c,k#0 x/EVs

® Parameters of the model are x; and '
® x; are used as final word embeddings (z/ usually discarded)

® Usually optimized with SGD

Fun word arithmetic artifact:

L Greece — (mCanada - thtawa) = T Athens
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Embeddings via Language Models

® word2vec is an example of a language model
® |t models the probability of a word given a context

® Pre-trained contextual language models dominate NLP: ELMO,
BERT, ROBERTA, XLNet, ..., GPT, Claude, Gemini, Llama, ...

® Transformed the field, business and potentially the economy

® QOther lectures will cover RNNs, which is main building block of NN
language models and LLMs
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Input layer
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¢ Static (e.g., word2vec) or dynamic word embeddings give us input
layer
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Dynamic Input layer

x2 L(y, y) = (y-y')?
x3
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® Gradient now includes input neurons, %

® Every value in the entire lookup table is a parameter!
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riable Length Inputs

® But what if input is a whole document and not just a single word?
e Feed-forward neural networks assume a fixed-length input, € RP
® Documents are not fixed length
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Variable Length Inputs: Options

© Truncate document at fixed length K, x € RK*D
@ Average embeddings (below), x € RP

© convolutional and recurrent neural networks*
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*RNNs next lecture
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Convolutional Neural Networks

‘ Convolutional

Layer ‘ ‘ Pooling Layer ‘
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Waibel et al. (1989) is often cited receptive field
as earliest example of a CNN
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Convolutional Neural Networks

® Convolutional layer

® A NN sub-architecture

Slides over input at a fixed stride, usually 1

Receptive field: fixed size input (e.g., n-gram)

Filter: MLP that creates a single vector output per position

Can be multiple filters: Almost always shared positionally; sometimes
even per layer

® Pooling layer
® Converts convolutional output to a single fixed-length vector

® Average pooling: average outputs of convolutional layers
® Max pooling: position-wise max over outputs of convolutional layers

Ryan McDonald (ASAPP) Classification AthNLP 2024 108 /114



Deep Convolutional Neural Networks

Convolutional Block
Convolutional Layer Pooling Layer
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Neural Network Summary

® Feed-forward Neural Networks
® Neurons, layers and connections
® Qutput layers and losses
® Back propagation
® |nput layers

® Static vs dynamic vs mixed

® High-level questions

® Where does layer and network structure come from?
® Why should | use neural networks?
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Where Does Network Structure Come From?

® Hyperparamters: input/hidden dimensions; activation functions; ...
® Usually empirical
® Can largely be automated

® Deep Learning = lot’s of layers

¢ Fully-connected/dense required?
® No!
® However, rarely does more specialized layer connections help
® Any efficiency concerns lessened by modern architectures (GPU, TPU)
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Main Points

! Inputs i
: Sparse / Dense '
i Feature Engineering | Lemmmmmmmm e ~
! Word Embeddings v \
! One-hot ! e . ' Output :
i Average Dense ' / A : Binary / multiclass '
! Convolutional-NN | ! Model : i Softmax or raw :
The ! ; i Perceptron ' ! Log-loss, hinge loss, ... !
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Main Points in Words

Sparse (binary) vs. dense (embeddings) features

Optimization: Use gradient-based techniques

Linear Classifiers
® Usually sparse features with block representations
® Loss functions define model (Log reg vs. SVMs)
® Regularization necessary for good performance

Neural Networks

® Final layer = linear classifiers

Hidden layers = non-convex

Compute gradient with backpropagation

Input layer: static (e.g., word2vec) vs. dynamic (backprop)
Input layer: Usually dense look-up table
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